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1. Structures on manifolds

Definition 1.1. A topological or C0-manifold of dimension n is a Hausdorff
topological space X, which admits local charts to φU : U → Rn.

It follows that the transition functions

tUV := φV ◦ φ−1
U : φU (U ∩ V )→ φV (U ∩ V )

are homeomorphisms.

Definition 1.2. By requiring tUV to respect extra geometric structures on
Rn, we produce many other classes of manifolds. In increasing order of
restrictiveness, we say X is additionally a

(1) PL manifold if tUV are piecewise-linear.

(2) Ck- or C∞-manifold if tUV ∈ Ck are k-differentiable or smooth.

(3) real-analytic manifold if tUV are real-analytic.

(4) complex-analytic manifold if tUV is holomorphic: i.e. has a complex-

linear differential with respect the identification Rn = Cn/2.
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(5) projective variety if there is a homeomorphism X → V (f1, . . . , fm) ⊂
CPN to a smooth vanishing locus of homogenous polynomials.

CPN := (CN+1 \ {0})/ ∼ with x ∼ λx for all λ ∈ C∗.

There is a natural notion of isomorphism for each class of manifold/variety,
by declaring that a homeomorphism f : X → Y defines an isomorphism if it
preserves the given structure. This amounts to saying that in local charts,
f is continuous, PL, smooth, real-analytic, holomorphic, polynomial, etc.

Warning: In the final case, we should really think of X as having the
much weaker Zariski topology, which is generated by complements of van-
ishing loci of polynomials.

What are the differences between these various structures? Can we clas-
sify the set of inequivalent finer structures on a coarser structure? Here are
some positive answers, some of which we will discuss in this class.

(1) Munkres, Morrey, Grauert: Every C1-manifold has a unique
Ck- and C∞-structure for all k ≥ 1. Every smooth manifold admits
a unique real-analytic structure.

(2) Every PL manifold in dimension n ≤ 7 admits a smooth structure.
In dimension n ≤ 6 this smooth structure is unique.

(3) Kirby-Siebenmann: There is an obstruction in H4(X,Z2) to a
topological manifold admiting a PL structure. Assuming this ob-
struction vanishes, the PL structures (up to concordance) are a tor-
sor over H3(X,Z2) when n ≥ 5.

(4) Moise, Smale: In dimensions n = 1, 2, 3, every topological man-
ifold has a unique smooth structure and in dimensions n ≥ 6, or
n = 5, ∂X = ∅, there are only finitely many (possibly zero) smooth
structures on given a topological manifold.

(5) Kervaire, Milnor, Brieskorn: There are 28 oriented smooth
structures on S7 which form a cyclic group under the operation of
direct sum. They can be constructed as links of the hypersurface
singularities in C5:

a2 + b2 + c2 + d3 + e6k−1 = 0, for k = 1, . . . , 28.

(6) Stallings, Taubes: As a C0-manifold, Rn has a unique smooth
structure for n 6= 4 and an uncountable infinity of smooth structures
when n = 4.

(7) Teichmüller, Deligne-Mumford: The complex-analytic struc-
tures (up to isomorphism) on a compact oriented surface of genus
g ≥ 2 form a complex orbifold Mg of dimension 3g − 3.

(8) Serre, Chow: If X is a compact complex-analytic manifold, any
two variety structures on X (if one exists) are isomorphic.

(9) Freedman: If X is a compact oriented simply-connected topological
4-manifold, then H2(X,Z) admits a symmetric bilinear form QX
valued in Z. When QX is even, it is the unique topological invariant
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of X, and when it is odd the two topological types are distinguished
by the Kirby-Siebenmann invariant. For instance, the blow-up of a
K3 surface at a point and 3CP2#20CP2 are homeomorphic (but not
diffeomorphic).

(10) Rokhlin: If X admits a smooth structure and w2(X) = 0, then 16
divides the signature of QX . So the E8-manifold X with intersection
form QX of signature −8 admits no smooth structure.

(11) Donaldson: If QX is positive- or negative-definite, then whenever
X admits a smooth structure, H2(X,Z) admits an orthonormal basis
for the quadratic form QX .

(12) Friedman, Morgan: Let X, Y be algebraic surfaces of Kodaira
dimension at least zero and let f : X → Y be a diffeomorphism.
Then f preserves, up to sign, the exceptional curve classes and the
canonical class. The plurigenera of X and Y are equal and so the
Kodaira dimension is a diffeomorphism invariant.

But there are still many unanswered basic open questions. Some of the
simplest are: Does S6 admit a complex structure? Is there only one smooth
structure on S4? The study of manifolds is vast, and we have to zero in on
something. We will focus on the interaction between topological and smooth
structures for 4-manifolds, and how gauge theory and complex geometry are
useful tools for exploring this interaction. As a warm-up, let’s prove that
the smooth structures on low-dimensional real space are unique.

Proposition 1.3. The C0-manifolds R1 and R2 admit unique smooth struc-
tures (up to diffeomorphism).

Sketch. Consider a smooth structure R̃ on a topological real line. Then R̃
admits an orientation (this is purely topological) and by taking a partition
of unity subordinate to coordinate charts, we can produce a smooth vector

field F on R̃ pointing in the direction of the orientation. Then the flow

φF : R→ R̃

satisfying φ′F (t) = F (φF (t)) is a diffeomorphism from standard R to R̃.

In dimension 2, choose an almost complex structure on S = R̃2 i.e. an en-
domorphism J ∈ End(TS) satisfying J2 = −I which is compatible with the
given smooth structure. By the Newlander-Nirenberg theorem in dimension
two, J defines a complex structure on S. Then since S is simply connected,
it is biholomorphic to either D or C by the Riemann mapping theorem, both
of which are diffeomorphic to R2. �

Exercise 1.4. Let X,Y be vector fields on an almost complex surface (S, J).
Show that the Nijenhuis tensor

NNJ(X,Y ) := [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]

vanishes. Hint: work in a local frame (e, Je) of the tangent bundle.
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The condition NNJ = 0 (in any dimension) is equivalent to the existence
of a complex structure for which Jp is induced by multiplication by i on TpS
for all p ∈ S.

Exercise 1.5. Can you extend this result to all topological manifolds of
dimension 1 and 2 using similar (or different) ideas?

Remark 1.6. In theory, we should be careful to distinguish when smooth
structures on a given topological manifold define the same smooth structure
versus diffeomorphic smooth structures.

For instance, the standard smooth structure on R and its pullback along
the homeomorphism t 7→ t3 do not lie in a single maximal atlas of smooth
charts: Otherwise there would be a transition function of the form t 7→ t1/3

for two charts containing the origin. Rather, t 7→ t3 defines a diffeomorphism
between the two smooth structures.

Before we get to some of the beautiful theorems listed above, we review
some of the tools involved in studying the geometry of smooth and complex
manifolds.

2. Sheaves, bundles, and connections

Let X be any topological space. A sheaf of abelian groups F is an assign-
ment to each open set U ⊂ X of an abelian group F(U) together with the
data of restriction maps

ρUV : F(U)→ F(V )

s 7→ s
∣∣
V

for any V ⊂ U , satisfying the following axioms:

(1) F(∅) = 0
(2) ρUU = idF(U)

(3) ρVW ◦ ρUV = ρUW
(4) Let U = ∪i∈IUi be an open cover of an open set. Given sections

si ∈ F(Ui) for which si
∣∣
Ui∩Uj

= sj
∣∣
Ui∩Uj

there is a unique s ∈ F(U)

for which s
∣∣
Ui

= si.

Exercise 2.1. A presheaf on X is defined as above, except that (4) need
not hold. Can you give an example of a presheaf on some topological space
which is not a sheaf?

Remark 2.2. We can define sheaves of sets or rings in the same way.

Example 2.3. Let X be a C0-, PL-, C∞-, real-analytic, or complex-analytic
manifold, or algebraic variety. Then there is a sheaf O of functions which
assigns to a coordinate chart U the continuous, PL, smooth, real-analytic,
complex-analytic, or polynomial functions on U , respectively. In various
cases, we will give different notations for O e.g. C0 for continuous functions,
C∞ for smooth functions, or Oan for complex-analytic functions.



ALGEBRAIC SURFACES AND FOUR-MANIFOLDS 5

Example 2.4. Let A be an abelian group. There is a sheaf A of locally
constant functions, which assigns A(U) := {f : U → A locally constant}.
Common cases are Z, R, C. Note that the constant functions usually fail
to be a sheaf because two disjoint open sets can support constant functions
taking different values.

Example 2.5. Let π : E → X be a vector bundle (in the appropriate cate-
gory of manifolds). This is a manifold with trivializations

hE : π−1(E)→ (Rd or Cd)× U
commuting with the projection to U for which the transition functions hV ◦
h−1
U are fiberwise linear: U → GLd(R or C). Then E defines a sheaf

E(U) := {sections s : U → π−1(U)}.
The structure we give E is as a sheaf of O-modules: For each open set U ,
there is an action of functions O(U) on E(U) by fiberwise multiplication,
and this action is compatible with restriction.

Definition 2.6. Let F and G be sheaves of abelian groups on a topological
space X. A morphism φ : F → G is a group homomorphism φ(U) : F(U)→
G(U) for all U ⊂ X open, which is compatible with the restriction maps.
More generally, when we have sheaves of rings or O-modules, we want φ(U)
to be ring homomorphism or morphism of O-modules.

Exercise 2.7. Show that ker(φ) is naturally a sheaf of abelian groups. Find
an example where the naively defined coker(φ) is not a sheaf. How might
you rectify this problem? Hint: Describe a procedure which converts any
presheaf into a sheaf.

Exercise 2.8. Consider the sheaf O of holomorphic functions on C. Show
that multiplication by z induces a map of sheaves from O to itself. What are
the kernel and cokernel sheaves of this map?

Definition 2.9. The global sections of a sheaf F on a topological space X
are H0(X,F) := F(X).

For example, C∞(X) = H0(X, C∞) are the smooth functions on X,
V F (X) = H0(X,TX) are the vector fields on X, and H0(X,Oan) are the
global holomorphic functions on X.

Definition 2.10. Given two vector bundles V , W onX, any linear-algebraic
construction will give a new vector bundle, for instance V ⊕ W , V ⊗ W ,
Hom(V,W ), V ∗, SympV ,

∧p V are all vector bundles.

Warning: Let X be a topological space and let V , W be vector bundles.
The sheaf Hom(V,W ) assigns to a small open set U the O(U)-module

HomO(U)(V (U),W (U))

whereas Hom(V,W ) will denote the value Hom(V,W )(X) of this sheaf on
the total space.
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Example 2.11. Let X be a smooth n-manifold. The sheaf Ωp of smooth p-
forms is defined to be Ωp(U) =

∧p T ∗(U) where T ∗ is the cotangent bundle.
More concretely, when U is a coordinate chart to Rn we have

Ωp(U) =
{∑

fI(z)dz
I
}

where 1 ≤ i1 < · · · < ip ≤ n and dzI = dzi1 ∧ · · · ∧ dzip with z = (zi) the
coordinates on U and fI smooth functions. There is a map d : Ωp → Ωp+1

sending a p-form to a (p+ 1)-form ω 7→ dω.

Warning: When X is a complex manifold, we use the symbol TX (and
similarly T ∗X, Ωi, etc) to denote the holomorphic tangent bundle: That is,
the tangent bundle of X, with its natural complex, holomorphic structure.
If we need to think of TX as a real bundle, we will write TXR.

Warning: The map d is not a map of O-modules: It is NOT the case
that for any f ∈ C∞(U) and any ω ∈ Ωp(U) that d(fω) = fdω, as would
be the case for the definition of a morphism of O-modules. The map d is
a morphism of sheaves of abelian groups since d(ω1 + ω2) = dω1 + dω2.
With respect to multiplication by functions, it satisfies the Liebniz rule:
d(fω) = fdω + df ∧ ω. This means d is a connection, see below.

Example 2.12. In the case of a complex manifold X, we can define Ωp

as above, instead requiring that fI(z) is holomorphic. We call these holo-
morphic p-forms. Note that this is different from the sheaf Ap,0 of smooth
(p, 0)-forms which are locally expressions as above, but with fI(z) smooth
functions. More generally, the sheaf Ap,q of smooth (p, q)-forms is defined
on a coordinate chart to be an expression of the form

Ap,q(U) :=
{∑

fI,J(z)dzI ∧ dzJ
}

with |I| = p and |J | = q and fI,J smooth complex-valued functions. Note
that the transition functions of Ap,q are not holomorphic for q 6= 0.

We now define principal G-bundles and associated bundles.

Definition 2.13. Let G be a Lie group. A principal G-bundle

π : P → X

is a space admitting local trivializations hU : π−1(U)→ G× U whose tran-
sition functions hV ◦ h−1

U are locally described by a map tUV : U ∩ V → G
acting on the fibers via left multiplication, P ×G→ P .

Note that P admits a (fiber-preserving) right action of G, i.e. a map
P × G → P because right- and left-multiplication commute. Let ρ : G →
GL(E) be a representation on a vector space E. The associated bundle of P
is the vector bundle E → X with trivializing charts to U ×E over the same
open sets, with transition functions ρ ◦ tUV .

From the associated bundle construction, we see there is a natural bijec-
tion between principal GLr(R)-bundles and vector bundles of rank r.
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Definition 2.14. Let X be a smooth manifold. A metric h on a vector
bundle π : E → X is a smoothly varying metric on every fiber hx(p, q)→ R
for p, q ∈ π−1(x). If E is a complex vector bundle, a hermitian metric h is
as above, but with hx(p, q) now a Hermitian metric on every fiber.

A metric on X is a metric on the tangent bundle TX, i.e. a smoothly
varying metric on the tangent space at any point TpX.

Exercise 2.15. Prove that any real vector bundle admits a metric, and
any complex vector bundle admits a Hermitian metric. Hint: describe the
space of metrics as a fiber bundle over X. What are the fibers? Now use a
partition of unity argument.

Now, we describe connections on bundles:

Definition 2.16. Let E → X be a vector bundle. A connection ∇ is a map
of sheaves of abelian groups ∇ : E → E ⊗ Ω1 satisfying the Liebniz rule:

∇(fs) = f ∇(s) + s⊗ df for all U, f ∈ O(U), s ∈ E(U).

Remark 2.17. A connection ∇ induces a map (which, by abuse, we also
denote by the same symbol) ∇ : E ⊗ Ωp → E ⊗ Ωp+1 we declaring

∇(s⊗ ω) = ∇s⊗ ω + s⊗ dω.

Exercise 2.18. Prove that the curvature ∇ ◦ ∇ : E → E ⊗ Ω2 is O-linear,
and hence defines a section F∇ of the vector bundle Hom(E , E) ⊗ Ω2. We
say ∇ is flat if F∇ = 0.

Example 2.19. The differential d defines a connection on the bundle O. Its
curvature Fd = 0 because d2f = 0 for any U and f ∈ O(U). Let ω ∈ Ω1(X)
be any 1-form. Then d+ ω is also a connection.

Definition 2.20. Given a vector bundle and flat connection (E ,∇), the
sheaf of flat sections is defined to be

L(U) := {s ∈ E(U) : ∇s = 0}.
By the following exercise, the restriction L

∣∣
U

is a constant sheaf for a vector
space of dimension rk(E) over any contractible open set U . We call L a local
system. It is determined by a representation of the fundamental group.

Exercise 2.21. Consider a trivializing chart hU : π−1(U) → U × Rr for E
over a contractible open set U and consider the identification of E(U) with
a tuple (f1, . . . , fr) of functions fi ∈ O(U). Show that any connection ∇ is
of the form

∇(f1, . . . , fr) = (d+A)(f1, . . . , fr)

where A is an r× r matrix of one-forms and d is the coordinate-wise differ-
ential. We call A the connection 1-form. Next prove that F∇ = dA+A∧A
where A ∧ A is matrix multiplication of one-forms via wedge product. Let
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p ∈ U and consider v ∈ π−1(p). Show that when F∇ = 0, there is a canonical
identification π−1(p)→ L(U) gotten by sending

v 7→ sv(q) := exp
(∫ q

p A
)
v.

Conclude that we have the following bijections:

(1) Vector bundles of rank r with a flat connection (E ,∇).
(2) Local systems on X of rank r.
(3) Representations of π1(X)→ GLr modulo conjugation.

3. Cohomology

We quickly review cohomology of sheaves, including Cech, de Rham, Dol-
beault, and singular cohomology.

Definition 3.1. Let F be a sheaf of abelian groups on X. Let U = {Ui}i∈I
be an open cover of X. Let Ui1...ip := Ui1 ∩ · · ·Uip . The Cech complex is
defined as follows:

CpU(X,F) :=
∏
i1<···<ip F(Ui1...ip)

with boundary map ∂σ = ∂pσ whose components are given by

(∂σ)i0...ip := (−1)jσi0...̂ij ...ip

∣∣
Ui0...ip

.

The Cech cohomology with respect to U is by definition

Hp
U(X,F) := ker(∂p)/im(∂p−1)

and the Cech cohomology Hp(X,F) is the limit over all U (partially ordered
by refinement of open covers) of the Cech cohomologies with respect to U.

Exercise 3.2. Check that ∂2 = 0 and H0
U(X,F) = H0(X,F) for any U.

Example 3.3. Consider the circle S1 and the constant sheaf Z. Take an
open cover S1 = U0 ∩ U1 with Ui intervals. Then the Cech complex is the
two-step complex

Z(U0)⊕ Z(U1)→ Z(U0 ∩ U1)

Z⊕ Z→ Z⊕ Z
(a, b) 7→ (a− b, a− b).

Taking the cohomology, we see Hp
U(S1,Z) = Z for p = 0, 1 and is zero for

other p. This will be the cohomology for any refinement of the open cover,
so Hp(S1,Z) is what we expect.

We now give a couple tools for actually computing Cech cohomology, since
the definition (as a limit over open covers) is pretty useless. We say that a
sheaf F on X is acyclic if Hk(X,F) = 0 for all k > 0.
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Theorem 3.4. Let X be paracompact and Hausdorff and let 0 → F1 →
F2 → F3 → 0 be a short exact sequence of sheaves of abelian groups on X.
Then there is a long exact sequence of abelian groups

0→H0(X,F1)→ H0(X,F2)→ H0(X,F3)→
H1(X,F1)→ H1(X,F2)→ H1(X,F3)→ · · ·

Sketch. The correct definition of sheaf cohomology is the cohomology of an
injective resolution. From this definition and formal properties of injective
objects, the theorem follows by the usual diagram chase. We have avoided
mention of injective objects for brevity.

So the real content of the statement is that when X is paracompact,
Hausdorff, the Cech cohomology computes the cohomology of an injective
resolution (sometimes called Grothendieck cohomology). A citation is Gode-
ment’s book “Theorie des faisceaux,” Theoreme 5.10.1. �

Corollary 3.5. Suppose that 0→ F → I0 → I1 → · · · is an exact sequence
of sheaves, with Ip acyclic. Then

Hp(X,F) =
ker(Ip(X)→ Ip+1(X))

im(Ip−1(X)→ Ip(X))
.

Proof. We break the sequence up into short exact sequences of sheaves

0→ F → I0 → im ∂0 → 0

0→ ker ∂1 → I1 → im ∂1 → 0 · · ·
and note that im ∂i = ker ∂i+1, as sheaves, by exactness. Taking the long
exact sequences in cohomology of each of these short exact sequences, the
acyclicity of Ip implies

Hp(F) = Hp−1(im ∂0) = Hp−1(ker ∂1) = Hp−2(im ∂2) = · · · = H0(ker ∂p)

∂p−1H0(Ip−1)

which is the desired equality. �

Corollary 3.6. Let U be an open cover of X. If F is acyclic on each Ui1...ip
then Hp

U(X,F) = Hp(X,F) computes the Cech cohomology.

Proof. The complex of sheaves

0→ F →
∏
iF
∣∣
Ui
→
∏
i<j F

∣∣
Uij
→ · · ·

where we view F
∣∣
U

as a sheaf on X by declaring F
∣∣
U

(V ) := F(U ∩ V ) is
an acyclic resolution of F and hence its global sections (the Cech complex)
computes the cohomology of F . �

Theorem 3.7. Let X be paracompact and locally contractible. The Cech
cohomology Hp(X,Z) = Hp(X,Z) agrees with singular cohomology.

Exercise 3.8. We say that a sheaf is flasque if the restriction F(U)→ F(V )
is surjective for any V ⊂ U . Show that a flasque sheaf is acyclic.
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A sheaf E of smooth or continuous sections of a vector bundle on a mani-
fold is not flasque because smooth and continuous functions can blow up at
the boundary of a closed set. But such sheaves are soft in that any section
over a closed set extends to all of X. This slightly weaker property is suffi-
cient to show that E is acyclic. Note that the sheaf of holomorphic p-forms
is not in general acyclic on a complex manifold X.

Let X be a smooth manifold. The de Rham complex is the resolution of
the constant sheaf by acyclic sheaves

0→ R→ C∞ = Ω0 → Ω1 → Ω2 → · · · .
This sequence of sheaves is exact because on any contractible open set U ⊂
X, every closed p-form ω (i.e. dω = 0) is exact (i.e. ω = dα). So H∗(X,R)
is computed by the cohomology of the complex of abelian groups

Ω0(X)→ Ω1(X)→ · · ·
which is called de Rham cohomology.

Similarly, if X is a complex manifold, there is an exact sequence of sheaves

0→ Ωp → Ap,0 → Ap,1 → · · ·
whose the differential is induced by ∂f =

∑
k
df
dzk

dzk called the Dolbeault

complex. The exactness at the first joint follows from the fact that a section
ω ∈ Ap,0(U) is holomorphic exactly when ∂ω = 0. We conclude that

Hp,q(X) := Hq(X,Ωp) =
ker(Ap,q(X)→ Ap,q+1(X))

im(Ap,q−1(X)→ Ap,q(X))
,

which is called Dolbeault cohomology. More generally, given any holomorphic
vector bundle E , we the ∂-complex

0→ E → E ⊗A0,0 → E ⊗A0,1 → E ⊗A0,2 → · · ·
gives an acyclic resolution, and so the cohomology of the complex H0(X, E⊗
A0,•) computes Hp(X, E).

Remark 3.9. We can take de Rham (or Dolbeault) cohomology H i(X,L)
with coefficients in a local system L. It is computed as the cohomology of
the complex L ⊗ Ω• (or L ⊗ Ap,•) with the differential acting nontrivially
only on the second factor.

Now, let’s review properties of singular cohomology. The key ones are:

Theorem 3.10. Let X be a topological space. The singular cohomology
H∗(X,Z) enjoys the following properties:

(1) (Functoriality) Given any map of topological spaces f : X → Y there
is a canonical pullback map f∗ : H∗(Y,Z)→ H∗(X,Z).

(2) (Cap product) There is a pairing

H i(X,Z)×Hj(X,Z)→ Hj−i(X,Z)

(φ, σ : ∆0,...,j → X) 7→ φ(σ
∣∣
∆0,...,i

) · σ
∣∣
∆i,...,j
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making homology a module over cohomology.

(3) (Universal coefficients) There are isomorphisms H i(X,Z)/tors =
Hi(X,Z)∗ and H i(X,Z)tors = Hi−1(X,Z)tors with various pieces of
singular cohomology.

(4) (Cup product) There is a ring structure ∪ on cohomology satisfying
α ∪ β = (−1)pqβ ∪ α for α ∈ Hp(X,Z), β ∈ Hq(X,Z).

(5) (Kunneth formula) If R is a field, we have a decomposition

Hk(X × Y,R) =
⊕

i+j=kH
i(X,R)⊗Hj(Y,R).

(6) (Poincare duality) If X is an oriented topological manifold of dimen-
sion n, there is a fundamental class [X] ∈ Hn(X,Z) for which the
cap product · ∩ [X] : H i(X,Z)→ Hn−i(X,Z) is an isomorphism.

(7) (de Rham comparison) If X is an oriented smooth manifold of di-
mension n, then singular cohomology Hp(X,R) is isomorphic to the
de Rham cohomology and the cap product Hp(X,R)⊗Hp(X,R)→ R
is described by integration: ([ω], σ) 7→

∫
σ ω.

Notation 3.11. Let M ⊂ X be a submanifold. We will abuse nota-
tion and let [M ] denote the fundamental class of M , the pushforward of
the fundamental class to HdimM (X,Z), and even the Poincare dual class
in HcodimM (X,Z). Given (7), we can rewrite the operator · ∪ [M ] on
HdimM (X,R) as the linear functional

∫
M on closed forms.

Definition 3.12. A lattice (L, ·) is a finitely generated, free Z-module to-
gether with a symmetric bilinear pairing · : L ⊗ L → Z. We say L is non-
degenerate if there is no nonzero ` ∈ L for which ` · L = 0. We say L is
unimodular if the map

L→ L∗ = Hom(L,Z)

` 7→ (x 7→ ` · x)

is an isomorphism. More generally, the index of a non-degenerate lattice is
the size |L∗/L| of the discriminant group L∗/L. A Gram matrix for L is the
symmetric integral matrix of inner products (ei, ·ej) for a basis {ei} of L.
The signature profile (σ+, σ−, σ0) of a lattice (L, ·) is the signature of the
induced quadratic form on the vector space L⊗Z R.

For a non-degenerate lattice, we usually elide the third entry of the sig-
nature profile, writing (σ+, σ−). Then, the signature of (L, ·) is σ+ − σ−.

Exercise 3.13. Show that the index |L∗/L| is equal to the absolute value of
the determinant of any Gram matrix for L.

Exercise 3.14. Let M be an oriented 4k-dimensional topological manifold.
Using the above properties of cohomology, prove that H2k(M,Z)/tors has
the structure of a unimodular lattice. Similarly, let M be an oriented 4k+2-
dimensional manifold. Show that H2k+1(M,Z)/tors is a unimodular sym-
plectic lattice (i.e. · is skew-symmetric).
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We give the following geometric understanding of the cup product:

Proposition 3.15. Let M,N ⊂ X be immersed submanifolds of a smooth
manifold X, which intersect transversely. Let [M ] ∈ HcodimM (X,Z) and
[N ] ∈ HcodimN (X,Z) be the Poincare duals of the pushforwards of the fun-
damental classes of M and N . Then [M ∩N ] = [M ] ∪ [N ] where M ∩N is
oriented by comparing the orientations on M,N,X.

In particular, we will use the following special case:

Corollary 3.16. Let X be a closed, oriented 2k-manifold and let M,N be
submanifolds of complementary dimension intersecting transversely. Define
the sign of an intersection point sgnp(M,N) = ±1 depending on if the con-
catenation of oriented frames (νM , νN ) is an oriented frame of TpX. Then∫

X
[M ] ∪ [N ] =

∑
p

sgnp(M,N).

Remark 3.17. If M and N are transverse complex submanifolds of a com-
plex manifold X then sgnp(M,N) = 1 always: For any C-basis (e1, . . . , en)
of TpX, the R-basis (e1, ie1, . . . , en, ien) is, by definition, oriented. Since we
have a complex-linear decomposition TpX = TpM⊕TpN , oriented real bases
of TpM and TpN of the above form will concatenate to one of the above form
and so (νM , νN ) is always compatible with the orientation on X.

4. Characteristic classes

We begin by reviewing the Stiefel-Whitney classes. Let G be a topological
group. The classifying space BG is a topological space admitting a “uni-
versal” principal G-bundle EG → BG for which homotopy classes of maps
[X,BG] are in bijection with principal G-bundles P → X by pulling back
the universal bundle to X.

P := X ×BG EG

A characteristic class of P is by definition the pullback of a cohomology
class on BG to X.

Example 4.1. Classifying spaces for linear groups often some kind of Grass-
mannian. For instance, let G = GL1(R) = R∗. Then we can take EG =
R∞ \ {0} and BG = RP∞ with the map EG→ BG be the projectivization
map. This works because EG is contractible and G acts freely on it (which
is what we need to produce the classifying space). So real line bundles on
X are classified by homotopy classes of maps to RP∞.

More generally, the same argument works for G = GLd(R) by taking
BG = Grd(R∞) and EG the frame bundle of the universal d-dimensional
vector space over BG. In practice, the ∞ can be thought of as just some
fixed number, since for any manifold X of fixed dimension, a homotopy
class c ∈ [X,BG] can be represented as a map into a finite dimensional
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Grassmannian. Similarly, for G = GLd(C), the classifying space is the
infinite Grassmannian of complex linear spaces BG = Grd(C∞).

We can also retract onto the classifying spaces BOd and BUd because
GLd(R), GLd(C) deformation-retract onto their maximal compact subgroups
Od and Ud via Gram-Schmidt orthonormalization. Concretely, EG in these
cases will be orthogonal frame bundles.

Another way of viewing this retraction is as a reduction of structure group:
Given any real vector bundle E → X, it admits a metric h. Then, we can
choose trivializations for which the fibers are identified to Rd with its stan-
dard metric. With respect to such trivializations, the transition functions
lie in Od rather than GLd(R). The same applies for hermitian metrics on
complex vector bundles, with the group Ud.

Exercise 4.2. Show that the limit as d goes to infinity of the cohomology
groups H∗(BUd,Z) stabilizes to an infinitely generated polynomial ring

Z[c1, c2, c3, . . . ]

with a generator ci in each even degree 2i. Hint: Construct a fibration
BUd−1 → BUd. What is the fiber? Now apply the Serre spectral sequence
and induction.

Similarly, the cohomology groups H∗(BOd,Z2) stabilize to an infinitely
generated polynomial ring

Z2[w1, w2, w3, . . . ].

Here we must take coefficients in Z2 as otherwise, it would be impossible for
a cohomology class of degree 1 to have nonzero square. Thus, we can define:

Definition 4.3. The Chern classes ci(E) ∈ H2i(X,Z) of a complex vector
bundle E → X are the pullbacks of ci to X along the classifying map.

Definition 4.4. The Stiefel-Whitney classes wi(E) ∈ H i(X,Z2) of a real
vector bundle E → X are the pullbacks of the wi along the classifying map.

Definition 4.5. The Pontryagin classes of a real vector bundle E are pi(E) :=
(−1)ic2i(E ⊗R C) ∈ H4i(X,Z).

Exercise 4.6. Prove that 2c2i+1(E ⊗R C) = 0.

Note that RP∞ and CP∞ are K(Z2, 1) and K(Z, 2) spaces respectively.
Thus, homotopy classes of maps are given by

[X,RP∞] = H1(X,Z2) and [X,CP∞] = H2(X,Z)

from which we conclude that real line bundles are classified by w1(L) ∈
H1(X,Z2) and complex line bundles are classified by c1(L) ∈ H2(X,Z). We
will primarily be interested in the Chern classes.
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Proposition 4.7. Let L → X be a real or complex line bundle. Let s ∈
C∞(X,L) be a smooth section for which s intersects the zero section of L
transversely. Then the vanishing locus V (s) ⊂ X, endowed with an appro-
priate orientation, is a submanifold representing the Poincare dual of w1(L)
or c1(L), respectively.

Proof. The class w1 ∈ H1(RP∞,Z2) or c1 ∈ H2(CP∞,Z) is represented by
the Poincare dual [H] (for any finite dimensional projective space) of a linear
hypersurface H. We first homotope the classifying map so that its image
lies in a finite dimensional projective space PN . This is possible because
X is a finite CW complex, and by the cellular approximation theorem, any
map of CW complexes is homotopic to a cellular map.

A linear hypersurface is the vanishing locus of a section of the universal
line bundle on PN . Assuming H is chosen generically, c1(L) is represented
by the inverse image of H, which is V (s) for a pulled back section s which
intersects the zero section transversely. �

An alternative, direct proof that H2(X,Z) represents smooth complex
line bundles uses the exponential exact sequence

0→ Z→ O → O∗ → 1

where the first map is inclusion of locally constant functions into smooth,
complex-valued functions, and the second map is exponentiation to smooth
non-vanishing functions O∗. A 1-cycle t ∈ Z1

U(X,O∗) in Cech cohomology is
a collection of smooth, non-vanishing functions tij ∈ O∗(Ui ∩ Uj) for which

tijt
−1
ik tjk = 1. Consider these modulo 1-boundaries, which are 1-cycles of

the form tij = tit
−1
j with ti ∈ O∗(Ui).

We can define a line bundle L associated to the 1-cycle t by trivializing
over the open set Ui and declaring the transition functions to be tij . If two
1-cycles are homologous, they differ by a 1-boundary, which corresponds
to post-composition the trivializations hi : π−1(Ui) → Ui × C with multi-
plication by ti. Thus, H1

U(X,O∗) is the space of line bundles which admit
a trivialization obver U. Since Cech cohomology is the limit over all open
covers U, and every line bundle (and isomorphism of line bundles) admits a
trivialization on some open cover, we conclude that H1(X,O∗) is in bijec-
tion with complex line bundles modulo isomorphism. This exact argument
works also for holomorphic line bundles, taking O, O∗ to be the sheaves of
holomorphic, holomorphic non-vanishing functions, respectively.

In the smooth case, H1(X,O) = H2(X,O) = 0 because then O admits
partitions of unity. So the long exact sequence of the exponential exact
sequence gives an isomorphism H1(X,O∗)→ H2(X,Z), and one can check
directly that the map is the first Chern class c1.

For real line bundles, consider the exact sequence

0→ O → O∗ → Z2 → 0
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where the first map is exponentiation, whose image is the sheaf of positive-
valued real functions inside the sheaf O∗ of non-vanishing real functions. As
before H1(X,O) = H2(X,O) = 0 and so H1(X,O∗) = H1(X,Z2) classifies
real line bundles.

Exercise 4.8. Let X be a smooth closed manifold. Show that w1(TX) = 0
if and only if X admits an orientation.

Theorem 4.9 (The splitting principle). Suppose E = L1 ⊕ · · · ⊕ Lr. Then
c(E) := c0(E) + c1(E) + · · · =

∏
(1 + c1(Li)). Furthermore, for any vector

bundle E → X, there is some Y and a map f : Y → X for which H∗(X,Z)→
H∗(Y,Z) is injective, and f∗E splits as a sum of line bundles.

Concretely, the theorem implies that any computation involving Chern
classes can be performed in terms of the “Chern roots” xi := c1(f∗Li). We
will do one such computation carefully, then cease to mention f or Y .

Corollary 4.10. c(E ⊕ F) = c(E)c(F).

Proof. We apply the splitting principle to E and F , then take the product
to find a common Y where both E and F split as say f∗E = L1 ⊕ · · · ⊕ Lr
and f∗F = M1 ⊕ · · · ⊕Ms. Then by functoriality of c under pullback,

f∗(c(E ⊕ F)) = c(f∗(E ⊕ F)) = c(f∗E ⊕ f∗F)
Prop
= c(f∗E)c(f∗F)

= f∗(c(E))f∗(c(F)) = f∗(c(E)c(F)).

Finally, we use that f∗ is injective to conclude the corollary. �

Exercise 4.11. Use the splitting principle to show that the top Chern class
cr(E) is represented by the vanishing locus of a generic section of E.

Exercise 4.12. Use the splitting principle to compute the Chern classes
of V ⊗W , Sym2(V ),

∧2 V in terms of ck(V ) and ck(W ). Which of these
formulas can you generalize to higher powers?

We have that e(x1, . . . , xr) = cr(E) where e is the elementary symmetric
polynomial. Then, any other symmetric polynomial in the xi is expressible
as some polynomial in cr(E). For instance, we can define:

Definition 4.13. The total Chern character of E is defined to be ch(E) :=∑
exi . In particular chk(E) =

∑
xki /k! are the (rescaled) power symmetric

polynomials. Note that ch(E) ∈ H∗(X,Q) is a rational cohomology class,
since its definition involves integer division.

Definition 4.14. The Todd class of E is td(E) :=
∏ xi

1−e−xi
∈ H∗(X,Q).

The Todd class of (a complex manifold) X is td(X) := td(TX).

Warning: For a real manifold, one usually considers td(TX ⊗C), which
is not the same as the definition we have given of td(X).
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Exercise 4.15. Expand the above Taylor series to compute ch(E) and td(E)
in terms of the Chern classes ck(E), in cohomological degrees 0, 2, 4, 6, 8.

Exercise 4.16. Prove ch is a ring homomorphism: ch(E⊕F) = ch(E)+(F)
and ch(E ⊗ F) = ch(E)ch(F).

5. The Riemann-Roch theorem and its generalizations

We begin by defining the Euler characteristic of a sheaf F to be

χ(F) = χ(X,F) =
∑

i(−1)ihi(X,F)

where hi(X,F) = dimH i(X,F). This quantity is defined when hi(X,F) =
0 for all i � 0 and is finite for all i. For instance, χ(C,Oan) is not well-
defined: h0(C,Oan) = dimC{holomorphic functions on C} =∞.

Theorem 5.1. If X is a compact complex manifold, and F is a holomor-
phic vector bundle (or more generally coherent sheaf), then χ(X,F) is well-
defined. In fact hi(X,F) = 0 for all i > dimCX.

Remark 5.2. By the agreement of sheaf and singular cohomology, we have
that h2 dimCX(X,C) = C. But note that C is not a holomorphic vector
bundle. It is, rather, a local system.

Theorem 5.3 (Riemann-Roch). Let C be a compact, connected Riemann
surface and let L→ C be a holomorphic line bundle. We have

χ(L) = deg(L) + 1− g
where deg(L) =

∫
C c1(L) and g is the genus of C.

Proof. It is useful to introduce the notion of a “point bundle” O(p). Let
U 3 p be a small analytic open set containing p with a chart to the disc
{z ∈ C : |z| < 2}. We define a holomorphic line bundle with two trivializing
charts, U and V . Set V = {z ∈ U : |z| ≤ 1}c ⊂ C and let the transition
function tUV (z) = z−1. Then O(p) admits a section sp ∈ H0(C,O(p)) which
equals z on the chart U and equals 1 on the chart V .

A divisor on C is a Z-linear combination of points D =
∑
nipi. We can

define a line bundle
O(D) :=

⊗
iO(pi)

⊗ni .

Note that O(D) has a meromorphic section sD :=
∏
i s
ni
pi (this section will

not be holomorphic if some ni are negative). We have
∫
C c1(O(p)) = 1

because sp transversely intersects the zero section and these are both holo-
morphic curves in the total space of O(p). Thus,

∫
C c1(O(D)) =

∑
ni by

computation with Chern classes.
For now, suppose that there exists some divisor D for which L = O(D)

(see Proposition 7.1). We can now prove the theorem by induction on
∑
|ni|.

Consider the exact sequence

0→ O(D)→ O(D + p)→ Cp → 0
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where the lefthand map is given by multiplying a (local) section on an open
set U by the restriction of the (global) section sp

∣∣
U
∈ O(p)(U). The quotient

sheaf is the skyscraper sheaf which takes values

Cp(U) =

{
C if p ∈ U
0 if p /∈ U

because multiplication by sp is invertible away from p, and near p the image
is, under a trivialization, the holomorphic functions vanishing at p.

It is easy to see that h0(C,Cp) = C and h1(C,Cp) = 0 by direct Cech
computation for any open cover. From the long exact sequence in cohomol-
ogy, we conclude that χ(O(D+ p))−χ(O(D)) = 1. The theorem follows by
induction, together with the base case χ(O) = 1− g which may be taken as
the definition of the genus.

If this is unsatisfactory and the reader prefers the topological genus, the
key here is to prove Serre duality, which implies χ(O) = −χ(Ω1) which in
turn shows that c1(Ω1) = 2g − 2, then to prove that c1(Ω1) = 2gtop − 2 by
either the Chern-Gauss-Bonnet formula, the Riemann-Hurwitz formula, or
the Poincare-Hopf index theorem.

It remains to show that any line bundle L = O(D) for some divisor D.
This is equivalent to showing that L has a meromorphic section: Let s be
a meromorphic section of L, with divisor div s = D recording the orders of
zeroes and poles of s in trivializing charts. Note that O(−D) has a section
s−D whose divisor is −D and so L ⊗ O(−D) has a section s ⊗ s−D with
no zeroes or poles. Then s ⊗ s−D defines a global trivialization of the line
bundle L⊗O(−D) = O and so we conclude that L = O(D). �

We now discuss generalizations of the Riemann-Roch theorem:

Theorem 5.4 (Grothendieck, Hirzebruch). Let E → X be a holomorphic
vector bundle on a compact complex manifold. We have

χ(E) =

∫
X

ch(E)td(X).

Exercise 5.5. Prove Noether’s formula: If S is a compact complex surface,
and K = c1(Ω1) ∈ H2(S,Z) then

χ(OS) = 1
12(K2 + χtop(S)).

Exercise 5.6. Prove the Riemann-Roch formula for compact complex sur-
faces S: If L→ S is a holomorphic line bundle,

χ(L) = χ(OS) + 1
2(L2 − L ·K).

Exercise 5.7. State and prove a Riemann-Roch formula for holomorphic
vector bundles on a Riemann surface.
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Theorem 5.8 (Atiyah-Singer). Let E• → X be an elliptic complex of smooth
complex vector bundles on a compact oriented n-manifold. We have

χ(E•) = (−1)n(n−1)/2

∫
X

ch

eul
(E•)td(TX ⊗ C)

where ch
eul is a certain natural way to divide the chern character ch(E•) :=∑

(−1)ich(E i) by the euler class eul(X) ∈ Hn(X,Z).

Warning: In general, the cohomology class ch(E)td(X) lies in mixed
cohomological degree, and integrating against X only picks out the degree
n term. We don’t define ch

eul . [Roughly, I think the Chern character lies in
compactly supported cohomology of T ∗X so you can integrate against the
fibers.] But we only need the index theorem a couple times, and in these
cases, it will be relatively clear what to do.

Definition 5.9. An elliptic complex 0 → E0 d0−→ E1 d1−→ · · · → En → 0 is a
complex of smooth vector bundles for which:

(1) The maps di are order N differential operators: In a trivializing chart
U , each coordinate of di is of the form∑

|I|≤N

gI∂I

where gI are smooth functions and ∂I = ∂i1 · · · ∂iN is partial differ-
entiation in some number of local coordinates (x1, . . . , xn) on U .

(2) The symbol complex of E• is exact away from the zero section of
π : T ∗X → X. It is the (now C∞-linear) complex of vector bundles

0→ π∗E0 σ(d0)−−−→ · · · → π∗En → 0

where σ(di) is defined by the replacing ∂i 7→ yi in the top order term∑
|I|=N gI∂I . Here yi : T ∗U → R is the coordinate function on the

second factor of T ∗U = U × Rn corresponding to xi.

Exercise 5.10. Carefully derive that the symbol map well-defined.

Example 5.11. Consider the differential operator d : O → Ω1. In local
coordinates on O and Ω1, we have that d = (∂1, . . . , ∂n) is simply coordinate-
wise differentiation. Thus, the symbol

σ(d) : π∗O → π∗Ω1

sends the function 1 ∈ π∗O(T ∗X) = O(T ∗X) to (y1, · · · , yn) ∈ π∗Ω1(X). In
other words, we are saying that (y1, . . . , yn) is a well-defined global section
of π∗Ω1. This is true: Given a point (p, α) ∈ T ∗X, a point in the fiber
(π∗Ω1)(p,α) corresponds to a cotangent vector β ∈ Ω1

pX, and there is an
obvious preferred section: β = α.
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More generally, considering the map d : Ωp → Ωp+1, the symbol map σ(d)
is acts on an element dxi1 ∧ · · · ∧ dxip of a frame of Ωp (and hence also a
frame of π∗Ωp) by

σ(d)(dxi1 ∧ · · · ∧ dxip) =
∑

j yjdx
j ∧ dxi1 ∧ · · · ∧ dxip

In other words, we have in coordinates that σ(d) =
∑

j yjdx
j ∧−. To check

that the symbol complex is elliptic, it suffices to check exactness over every
fiber (p, α) for which α 6= 0. This is a complex of vector spaces

0→
∧0 Rn →

∧1 Rn →
∧2 Rn → · · ·

and the map σ(d) is simply α∧−, so the statement reduces to showing that
α ∧ v = 0 if and only if v = α ∧ β for some γ. Choosing a basis for which
α = e1 is a coordinate, this is clear. So the de Rham complex is elliptic.

Suppose X is a manifold of real dimension 2n. Let ±xi be the Chern
roots of TX ⊗ C. Then eul(X) =

∏
xi. We have by computation:

Exercise 5.12. ch(Ω•XR ⊗ C) =
∏
i(1− exi)(1− e−xi)

We conclude by the Atiyah-Singer index theorem that

χtop(X) = (−1)n
∫
X

∏
i

(1− exi)(1− e−xi)
xi

∏
i

xi
1− e−xi

−xi
1− exi

=

∫
X

eul(X)

which is called the Chern-Gauss-Bonnet theorem.

Example 5.13. Let E → X be a holomorphic vector bundle. Consider
the acyclic resolution by the ∂-complex 0 → E ⊗ A0,0 → E ⊗ A0,1 → · · ·
whose cohomology of global sections computes the groups H i(X, E). The
symbol σ(∂) is, by essentially the same computation as above, given at a
point (p, α) ∈ T ∗X by the operator id ⊗ α ∧ − on the complex of vector
spaces Ep ⊗

∧•Cn. So the same argument implies that the ∂-complex is
elliptic. We conclude by Atiyah-Singer that

χ(E) = χ(E ⊗A0,•) = (−1)n
∫
X

ch

eul
(E ⊗A0,•)td(TX ⊗ C)

= (−1)n
∫
X

ch(E)ch(A0,•)
∏
i

1

xi
· xi

1− e−xi
· −xi

1− exi
=

∫
X

ch(E)td(X).

[The Chern roots of A0,1 are xi, because we are taking anti-holomorphic 1-
forms as opposed to holomorphic vector fields, so there are two sign switches.
So ch(A0,•) =

∏
(1 − exi).] So we recover the Hirzebruch-Riemann-Roch

theorem from the Atiyah-Singer index theorem.

6. The Hodge theorems

We will not prove the Atiyah-Singer index theorem, but we will discuss
some of the ideas by outlining a proof in a simpler case: Hodge theory.

Let (X, g) be a compact, oriented Riemannian n-manifold, i.e. g is a met-
ric on TX. Then g induces a metric on any tensorial construction involving
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the tangent bundle, in particular, on the spaces Ωp(X) of smooth p-forms on
X. By abuse, we will also denote this metric by g. Concretely, if {e1, . . . , en}
is an orthonormal basis of T ∗x , then ei1 ∧ · · · ∧ eip for i1 < · · · < ip is the
orthonormal basis of Ωp

x. Define a symmetric pairing on Ωp(X) by

〈α, β〉 :=

∫
X
g(α, β) dν

where dν is the volume form induced by g. We introduce:

Definition 6.1. The Hodge star operator ∗ : Ωp → Ωn−p is defined by the
property α ∧ ∗β = g(α, β) dν. It is an isometry.

Exercise 6.2. Show that ∗2 = (−1)p(n−p).

Proposition 6.3. Let d∗ := (−1)n(p−1)+1 ∗d∗. We have 〈α, dβ〉 = 〈d∗α, β〉.

Proof. By Stokes’ theorem,

〈α, dβ〉 =
∫
α ∧ ∗dβ =

∫
∗α ∧ dβ = −

∫
d ∗ α ∧ β =

∫
β ∧ ∗d∗α = 〈β, d∗α〉.

�

This proposition says that d and d∗ are formally adjoint.

Definition 6.4. The Laplacian is the differential operator ∆ = dd∗ + d∗d
from smooth p-forms to themselves. We say that a p-form is harmonic if
∆α = 0. Denote the harmonic p-forms by Hp(X).

Proposition 6.5. A smooth p-form α is harmonic if and only if

dα = d∗α = 0.

Proof. We have from the Proposition 6.3 that

〈α,∆α〉 = 〈α, dd∗α+ d∗dα〉 = 〈dα, dα〉+ 〈d∗α, d∗α〉.
The proposition now follows from the statement that 〈β, β〉 ≥ 0 with equality
if and only if β = 0, since g(β, β) is pointwise non-negative. �

Proposition 6.6. The vector subspaces dΩp−1(X), Hp(X), d∗Ωp+1(X) of
Ωp(X) are mutually orthogonal.

Proof. 〈dα, d∗β〉 = 〈d2α, β〉 = 0 so the first and third spaces are othogonal.
The middle space is orthogonal to the other two because we can move the
d or d∗ and take the adjoint. But dα = d∗α = 0 for any harmonic form α
by Proposition 6.5. �

Observation 6.7. Suppose that Ωp(X) were complete with respect to the
L2-inner product 〈α, β〉. Warning: it isn’t! A decomposition

Ωp(X) = dΩp−1(X)⊕Hp(X)⊕ d∗Ωp+1(X)

would then hold: ∆ would be a self-adjoint operator on a Hilbert space. By
the spectral theorem there would be an orthogonal decomposition Ωp(X) =
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λ Ωp(X)λ into eigenspaces, and in particular, we would have a decom-

position Ωp(X) = ker(∆) ⊕ im(∆) into λ = 0 and λ 6= 0 pieces. Since
ker(∆) = Hp(X) we would have

im(∆) = Hp(X)⊥ = dΩp−1(X)⊕ d∗Ωp+1(X)

with the nontrivial containment ⊃ following from Proposition 6.6.

Exercise 6.8. Give an example of an inner product space V (necessarily not
complete) and a self-adjoint operator O on it for which V 6= kerO ⊕ imO.

How do we get around the issue that Ωp(X) is incomplete with respect to
the inner product? Resolving this issue requires some analysis, at the heart
of understanding elliptic differential operators and the index theorem. We
will give a rough sketch to give a flavor of the math involved.

Definition 6.9. Let E → X be a smooth vector bundle on a compact
smooth manifold with a metric g. The Sobolev space Wk is the completion
of E(X) with respect to a certain norm. Let {fi} be a smooth partition of
unity subordinate to finite trivializing cover {Ui} and let Ui ↪→ Tn := Rn/Zn
be embeddings of each chart into a torus, so that fis is identified with a
section of the trivial bundle Rr × Tn → Tn for any s ∈ E(X). The kth
Sobolev norm on E(X) can be defined as follows:

||s||k : =
∑

i ||fis||k where

||fis||k : =
∑
|I|≤k

||∂I(fis)||L2 .

This definition produces a space Wk which does not depend on the parti-
tion of unity or smooth trivializations. Furthermore, W0 is the L2-completion
of E(X) (with respect to any metric) on E . Heuristically, the completion de-
scribes sections for which the L2-norms of s and all its partial derivatives up
to kth order are finite. This definition is well-suited to studying differential
operators, since an order ` differential operator from E → F gives a map of
Sobolev spaces Wk(E)→ Wk−`(F). So we can use tools from the theory of
linear maps of Banach spaces. [Warning: To actually show that this gives a
bounded operator between Banach spaces is a little delicate, requiring some
simple elliptic estimates.]

The reason for embedding into the torus Tn instead of Rn is that it is
easiest to analyze Sobolev spaces using Fourier series:

Exercise 6.10. Consider the trivial bundle on Tn. Then

Wk =
{∑

ψ ∈Zn cψ e
2πiψ·~x ∣∣ ∑

ψ ∈Zn(1 + |ψ|2 + · · ·+ |ψ|2k)cψ <∞
}
.

Theorem 6.11 (Sobolev Embedding Theorem). There is an embedding
Wn ↪→ C0E(X) into continuous sections of E. More generally, there is an
embedding Wn+k ↪→ CkE(X) and hence ∩m≥0Wm = E(X).
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Sketch. The Fourier coefficients of each coordinates of fis must satisfy the
growth condition in Exercise 6.10. This implies convergence of fis to a
continuous function on Tn: We have cψ ∈ O(|ψ|−2n) and

∑
ψ∈Zn\{0} |ψ|−2n

converges. The statement about higher derivatives follows by noting that
the derivative of anything in Wm lies in Wm−1. �

Exercise 6.12. The embedding Wk ↪→ Wk′ for any k > k′ is a compact
operator: It sends the unit ball to a compact set.

Theorem 6.13 (Elliptic regularity and bootstrapping). Let

0→ E D−→ F → 0

be an elliptic differential operator D of order `. Then D : Wk(E)→Wk−`(F)
is Fredholm: It has finite-dimensional kernel, cokernel, and closed image.
Furthermore, the kernel and cokernel of D are isomorphic for all k ∈ Z, and
so are represented by smooth sections.

Sketch. The idea is to construct a so-called pseudo-inverse P to D: It is an
operator for which I−PD and I−DP are compact. It is roughly constructed
as follows: P invertsD up to leading differential order by dividing the Fourier
coefficient by the polynomial encoding the symbol. This is possible exactly
because the symbol σ(D) is invertible.

Example 6.14. Consider the operator d : O → Ω1 on the circle S1 (whose
symbol is y). This acts on Fourier series by

D :
∑

a∈Z cae
2πiax 7→

∑
a∈Z acae

2πiax.

To construct a pseudo-inverse to D, we define

P :
∑

a∈Z cae
2πiax 7→

∑
a∈Z\{0} a

−1cae
2πiax.

Then we have that

I − PD : f(x) 7→ f(0) = a0

I −DP : f(x) 7→ f(0) = a0

both have 1-dimensional cokernel. The Laplacian ∆ has symbol y2
1 + · · ·+y2

n

(or more canonically, the metric g ∈ Sym2T ∗X). So the pseudoinverse P of
∆ will send the Fourier coefficients cψ 7→ |ψ|−2cψ for non-zero ψ and c~0 7→ 0.

We conclude that I −PD (and similarly I −DP ) is regularity increasing:
They map Wk into Wk′ for some k′ > k because the leading order derivative
is cancelled off. But by the previous exercise, this embedding is a compact
operator. The partition of unity {fi} will interfere with the argument a bit,
but any time a derivative in the differential operator interacts with a smooth
function fi instead of the section s, the regularity of s will fail to decrease
and the regularity of fi will stay the same (since it is smooth). So these
issues can be swept into the compact operator.



ALGEBRAIC SURFACES AND FOUR-MANIFOLDS 23

It is easy to show that I −K is a Fredholm operator, in fact of index =
dim(ker)− dim(coker) = 0, for any compact operator K. This follows from
a continuity argument for the family of operators I − tK. It follows that
PD and DP are Fredholm, from which it follows that D and P are too.

It remains to show that the kernel and cokernel of D don’t depend on
the choice of k. If, for instance, s ∈ ker(D), then s = (I − PD)s and hence
s ∈ Wk =⇒ s ∈ Wk′ for k′ > k. Therefore, s ∈

⋂
mWm and so by Sobolev

embedding, the kernels of D and P are represented by smooth sections. �

Remark 6.15. Any elliptic complex (E•, ∂) can be turned into a two-term

elliptic complex Eeven D−→ Eodd by taking D =
∑

i ∂2i + ∂∗2i+1.

Theorem 6.16 (Hodge Theorem). Let (X, g) be a compact oriented Rie-
mannian manifold. There is a decomposition

Ωp(X) = dΩp−1(X)⊕Hp(X)⊕ d∗Ωp+1(X)

and the map Hp(X) → Hp(X) = ker(d)/im(d) is an isomorphism (i.e. the
harmonic forms are canonical representatives of cohomology classes).

Proof. We have seen that the stated decomposition holds by the Sobolev
space argument, and Observation 6.7. We claim that ker(d) = dΩp−1(X)⊕
Hp(X). Certainly ⊃ is clear. Supposing that dd∗β = 0, we have 〈dd∗β, β〉 =
〈d∗b, d∗b〉 = 0 and so d∗β = 0, implying the other inclusion ⊂. Thus, we see
that ker(d)/im(d) = Hp(X) ∼= Hp(X). �

We have until now been discussing compact oriented real manifolds. What
extra structure do we see when X is complex?

Definition 6.17. Let X be a complex manifold. A Kahler form ω ∈ Ω2(XR)
is a closed, real 2-form for which ω(v, Jw) = g(v, w) is a metric on the
tangent space v, w ∈ TxXR. The hermitian metric is h := g + iω. It defines
a positive-definite Hermitian form on the tangent space TxX (viewed as a
complex vector space).

Remark 6.18. Any two of the three structures g, J , ω determine the third
structure uniquely. Though notably, given ω not all J work, because the
positive-definiteness of g is not automatic. We say that J is tamed by ω
when ω(v, Jw) is a positive-definite metric.

Exercise 6.19. Show that the space of ω-tame almost complex structures J
on (X,ω) is connected.

In some cases, invariants are independent under deformations of J , thus
giving invariants of symplectic manifolds (X,ω).

The Hodge theorem works just as well in the Kahler setting, using adjoints
with respect to the Hermitian metric h instead of real metric g, but we have
some extra structure. Note that there is a decomposition of k-forms

Ωk(XR) =
⊕
p+q=k

Ap,q(X)
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into forms of (p, q)-type. But, d = ∂+∂ acts by sending a (p, q)-form to the
sum of a (p + 1, q)-form and a (p, q + 1)-form, so d does not act well with
respect to the bigrading (p, q). To rectify this, we have:

Proposition 6.20 (The Kahler identities). Let (X,h) be a Kahler complex
manifold. Let ∆ = ∆d be the metric Laplacian for the Hermitian metric h,
as above. Define

∆∂ : = ∂ ∂
∗

+ ∂
∗
∂

∆∂ : = ∂∂∗ + ∂∗∂

by taking the formal adjoints to ∂ and ∂ = d− ∂. Then
1
2∆d = ∆∂ = ∆∂ .

Proof. See Griffiths and Harris, or the internet. Even though the computa-
tion is purely local, these are surprisingly tricky to prove. �

The upshot of the Kahler identities is that ker(∆d) = ker(∆∂) but ∂, ∂
∗

respect the bigrading, sending Ap,q(X)→ Ap,q±1(X). We conclude:

Theorem 6.21 (Hodge decomposition and symemtry). Let (X,h) be a
Kahler complex manifold. We have a decomposition

Hk(X) =
⊕
p+q=k

Hp,q(X)

into harmonic forms of (p, q)-type. Furthermore, Hp,q(X) = Hq,p(X) and
the map Hp,q(X)→ Hq(X,Ωp) (via Dolbeault cohomology, see Section 3) is
an isomorphism.

Proof. Since ∆d = 2∆∂ , the d-harmonic forms are the same as ∂-harmonic

forms, implying that ker(∆∂) = ker(∆d

∣∣
Ap,q). By the above arguments,

there is an orthogonal decomposition

Ap,q(X) = ∂Ap,q−1(X)⊕ ker(∆∂)⊕ ∂∗Ap,q+1(X)

and so Hp,q(X) represents Dolbeault cohomology. �

This wonderful theorem has many interesting implications, for instance:

Exercise 6.22. Show that if X admits a Kahler structure, b2k+1(X) is even.

Consider for example S := S̃/Z where S̃ := C2 \ {0} and a generator of Z
acts by (x, y) 7→ (2x, 2y). Prove that S admits no Kahler structure!

Remark 6.23. Every smooth projective variety is Kahler, because CPn
admits a Kahler form (whose underlying ω is the Fubini-Study form). Its
restriction to any smooth projective subvariety of CPn is Kahler.

Theorem 6.24 (Hard Lefschetz Theorem). Define operators E := [ω] ∧−,
its adjoint F := E∗, and H = [E,F ]. Then E,F,H define a representation
of sl2(R) on the harmonic forms H•(X) with weight spaces H

∣∣
Hk(X)

= k−n.

In particular, Ek : Hn−k(X)→ Hn+k(X) is an isomorphism.
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Furthermore, ω is harmonic of (1, 1)-type and so E sends harmonic (p, q)-
forms to harmonic (p+ 1, q + 1)-forms.

Corollary 6.25. hp,q(X) = hq,p(X) = hn−p,n−q(X) = hn−q,n−p(X).

Corollary 6.26. If X is Kahler, then hp,p(X) > 0 for all X, and in par-
ticular b2k(X) > 0, for 0 ≤ k ≤ n.

7. Introduction to algebraic surfaces

We now have most of the necessary tools at our disposal to classify
smooth, projective complex surfaces. We follow Beauville’s book. The clas-
sification is attributed to Enriques and Kodaira. Let’s set some notation:

S is a smooth projective complex surface.

K = KS = Ω2 is the canonical bundle. Generally KX = ΩdimCX .

L→ S is a holomorphic line bundle.

C =
∑
niCi ⊂ S a divisor in S: A linear combination of codimension

1 subvarieties (in this case curves).

O(C) is the line bundle with a section of zero order ni along Ci.

χ(C) = χ(S,O(C)) is the Euler characteristic.

C ·D is the intersection form, computed as
∫
S [C] ∪ [D].

Pic(S), resp. Pic0(S), is the group of holomorphic line bundles under
tensor product, resp. for which c1(L) = 0.

NS(S) is the Neron-Severi group: The subgroup of H2(S,Z) of
classes c1(L) for some holomorphic line bundle L. Note there is
an exact sequence 0→ Pic0(S)→ Pic(S)→ NS(S)→ 0.

Note by Proposition 4.7, c1(O(C)) = [C]. Associated to a divisor is a
critically important exact sequence which we will use all the time. Let X be
a smooth projective variety, and let D ⊂ X be a codimension 1 subvariety.
Then there is an exact sequence of sheaves of O-modules

0→ O(−D)→ O → OD → 0

where the map O(−D)→ O is given by multiplication by the section sD ∈
H0(X,O(D)) which vanishes along D. The image is the sheaf of functions
which vanish along D and so the quotient is the sheaf of functions supported
on D. It is a sheaf on X by declaring OD(U) := O(U ∩D), in a similar way
to the skyscraper sheaves we’ve seen before.

More generally, we can tensor the above exact sequence of sheaves with a
vector bundle, to get a sequence

0→ E(−D)→ E → E
∣∣
D
→ 0

which is still exact (since exactness is a local condition, and tensoring an
exact sequence of O-modules with a locally free module is still exact).
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Proposition 7.1. Let X be a smooth projective variety of dimension n.
Every holomorphic line bundle L = O(C) for some divisor C.

Proof. Let H be a hyperplane section of X: The intersection of X with a
(generic) hyperplane in CPN . We require

Lemma 7.2 (Serre Vanishing Theorem). For any holomorphic vector bundle
E → X, we have hi(X, E ⊗ O(kH)) = 0 for all i > 0, k � 0.

Proof. The proof requires some analysis involving Kahler identities, see Huy-
brechts Complex Geometry: An Introduction, Proposition 5.2.7. �

We now apply the Hirzebruch-Riemann-Roch theorem. By multiplicativ-
ity of the Chern character,

χ(L⊗O(kH)) =

∫
X

ch(L)ch(O(H))ktd(X).

Let h = [H] ∈ H2(X,Z). Then ch(O(H))k = 1+kh+k2h2/2!+· · · . For k �
0, the dominant term is kdimXhdimX/(dimX)! because hdimX is the inter-
section number of dimX hyperplanes in CPN with X, which is positive. (By
definition, it is the degree of X). So χ(L⊗O(kH)) ∼ kdimXhdimX/(dimX)!
has order dimX polynomial growth in k. Thus, h0(L ⊗ O(kH)) > 0 for
large k. Let D = div(s) for s ∈ H0(L ⊗ O(kH)) a non-zero section. Then
C = kH −D is a divisor for which L = O(C). �

Remark 7.3. A bit more work shows that we can ensure that sections of
L⊗O(kH) defines a projective embedding, so in fact, every line bundle (or
divisor) is a difference of two two very ample divisors. By Bertini’s theorem,
these divisors may be chosen to be smooth.

Proposition 7.4. Let C and D be curves sharing no component. Their
intersection number can be computed in the following ways:

C ·D = degO(C)
∣∣
D

=
∑

p∈C∩D
lenp(C ∩D)

where lenp(C ∩D) is the length at p of the scheme-theoretic intersection of
C and D.

Proof. We have C ·D = degO(C)
∣∣
D

because∫
S

[C] ∪ [D] =

∫
C

[D] =

∫
C
c1(O(D)).

We have an exact sequence of sheaves

0→ OS(−C −D)→ OS(−C)⊕OS(−D)→ OS → OC∩D → 0

where the first two maps are multiplication by (sD, sC) and (sC ,−sD)T and
the last map is restriction.

The exactness at the second term follows from the fact that OS(U) is a
UFD for a contractible open set U and that in local trivializations, sC , sD
share no common prime factor because C, D share no component. Exactness
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at the last term is the definition of the sheaf OC∩D: It takes the value
OC∩D(U) = O(U)/O(U)sC +O(U)sD on a small open set U . Its support is
the set C ∩D. By definition,∑

p∈C∩D lenp(C ∩D) = h0(OC∩D).

Note hi(OC∩D) = 0 for all i > 0 because C ∩ D has dimension 0. By
additivity of the Euler characteristic, it suffices to show that∑

p∈C∩D lenp(C∩D) = χ(OS(−C−D))−χ(OS(−C))−χ(OS(−D))+χ(OS).

Then the desired equality follows from the Riemann-Roch formula for alge-
braic surfaces, see Exercise 5.6. �

Remark 7.5. Alternatively, Proposition 7.4 can be used to prove Riemann-
Roch for line bundles on algebraic surfaces—this requires showing that small
holomorphic perturbations near p of C and D which intersect transversely
turn the intersection point p into exactly lenp(C ∩D) intersection points.

Proposition 7.6 (Adjunction Formula). Let C be a smooth curve in S,
then Ω1

C = (Ω2
S ⊗O(C))

∣∣
C

and in particular,

2g(C)− 2 = C · (C +K).

Proof. Associated to any local section s ∈ Ω2
S ⊗O(C)(U) we can construct

a meromorphic 2-form s/sC ∈ Mero Ω2
S(U) with (at worst) a first order pole

along C. Let p ∈ C and let γp(r) be a small oriented loop in S \ C around
p ∈ C of radius r. Then the residue map resC : Ω2

S ⊗O(C)→ Ω1
C is

resC(s/sC) := lim
r→0

1

2πi

∮
γp(r)

s/sC ∈ Ω1(U ∩ C).

This map is OS-linear and the kernel consists of the 2-forms with no pole
along C. We conclude that there is an exact sequence of sheaves

0→ KS
·sC−−→ KS ⊗O(C)→ KC → 0

and so resC is identified with the restriction map of line bundles. �

Remark 7.7. The same argument works in general for a smooth divisor
D in any smooth complex manifold X. In a local holomorphic coordinate
system (x1, . . . , xn) where D = V (x1), a holomorphic top-form on X is of
the form s = f(x1, . . . , xn) dx1 ∧ · · · ∧ dxn for some holomorphic function f .
We conclude the following formula for the residue:

resD
s

sD
= lim

r→0

1

2πi

∮
|x1|=r

f
dx1

x1
∧ · · · ∧ dxn = f(0, x2, . . . , xn)dx2 ∧ · · · ∧ dxn

Exercise 7.8. Compute the genus of a smooth complex curve of degree d in
CP2. Compute the genus of a smooth curve of bidegree (d, e) in CP1×CP1.

Exercise 7.9. Use the local formula for the residue in Remark 7.7 to check
that the residue map resD is well-defined (independent of coordinate chart)
and O-linear.
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We haven’t discussed many examples of smooth compact 4-manifolds or
compact complex surfaces yet. So here are some:

Example 7.10. Obviously, the simplest example is S4.

Example 7.11. An important example is CP2. Since CP2 can be built from
a single 0-, 2-, and 4-cell, we have

Hk(CP2,Z) =

{
Z if k = 0, 2, 4
0 if k = 1, 3.

We know that the cup product on H2(CP2,Z) defines a unimodular lattice,
whose Gram matrix is necessarily [±1]. In fact, it is [1]: A generator of
H2(CP2,Z) is the class of a hyperplane h and h2 = 1 because two general
lines CP1 ⊂ CP2 intersect transversely at a single point. The canonical
bundle K = −3h, and more generally KCPn = −(n + 1)h. The Hodge
numbers are hp,q = 0 unless (p, q) = (0, 0), (1, 1), (2, 2) in which case hp,q = 1.

Example 7.12. There is a smooth 4-manifold CP2 which is the same as
CP2 except that we have negated the orientation. The orientation at an
intersection point of two hyperplanes is not compatible with the orientation
on CP2 and so the Gram matrix is [−1].

Exercise 7.13. Show that S4 and CP2 do not admit complex structures.
Hint: Review the formulas we know about complex surfaces.

Example 7.14. A complete intersection is the smooth intersection of n− 2
hypersurfaces in CPn. For instance, the Fermat K3 surface is

S := {x4
0 + x4

1 + x4
2 + x4

3 = 0} ⊂ CP3.

It follows from the adjunction formula that KS = KCP3 ⊗OCP3(S)
∣∣
S

= OS
is a trivial bundle. So S has a global holomorphic non-vanishing 2-form.
We conclude that h2,0(X) = h0(S,Ω2) = 1. By Hodge symmetry, h0,2 = 1.
Next, we cite the following theorem:

Theorem 7.15 (Lefschetz hyperplane theorem). Let X be a projective va-
riety of dimension dimX ≥ 3 and let Y be the smooth intersection of X
with a hypersurface. Then the map π1(Y ) → π1(X) is an isomorphism, as
are the pullback maps Hk(X,Z)→ Hk(Y,Z) for all k < dimY .

We conclude that π1 of a complete intersection X of dimension dimX > 1
is zero, because π1(CPn) = 0. For all k 6= dimX, Hk(X,Z) of a complete
intersection is 0 for odd k, and Z for even k. In particular, π1(S) = 0 and
hence h1(X) = h1,0(X) = h0,1(X) = 0. By Noether’s formula,

2 = h0,0 − h0,1 + h0,2 = χ(O(S)) = 1
12(K2 + χtop(S)) = 1

12(4 + h1,1(S))

from which we conclude that h1,1(S) = 20. This determines the Hodge
diamond hp,q completely.
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Let T → CPn denote the tautological bundle whose fiber over a point is the
line in Cn+1 which projectivizes to this point. Then T generates the Picard
group of CPn and we define O(−k) := T⊗k. It is easy to show O(1) = O(H)
for a hyperplane H ⊂ CPn. For the following exercise, you may assume

H i(CPn,O(k)) =

 0 if i 6= 0, n
C[x0, . . . , xn]k if i = 0
C[x0, . . . , xn]−n−1−k if i = n

where C[x0, . . . , xn]k denotes the vector space of degree k homogenous poly-
nomials in n+ 1 variables.

Exercise 7.16. Compute the Hodge diamond of a smooth hypersurface X
of degree 5 in CP3.

Example 7.17. Given two smooth surfaces B,F their product B × F is a
smooth 4-manifold. More generally, there are surface fiber bundles S over
a surface F → S → B and some of these admit complex structures. For
instance, if B and F are Riemann surfaces, the product works. An example
is CP1 × CP1, whose cohomology is easily computed to be

Hk(CP1 × CP1,Z) =

 Z2 if k = 2
Z if k = 0, 4
0 if k = 1, 3.

The fiber classes e := [pt×CP1] and f := [CP1×pt] intersect in a unimodular
Gram matrix

H :=

(
0 1
1 0

)
and hence generate H2. We will see that there are other holomorphic CP1-
bundles over CP1, called Hirzebruch surfaces Fn. They are constructed by
projectivizing the fibers of the rank 2 vector bundle O ⊕O(n)→ CP1.

Example 7.18. Let Γ ⊂ PU(1, 2) be a discrete, torsion-free subgroup of
the projectivized group of Hermitian isometries of C1,2. Then Γ acts freely
on complex hyperbolic space

P{v ∈ C1,2
∣∣ v · v > 0} = B2 ⊂ CP2

which is a complex ball of dimension 2. In some special cases, Γ acts co-
compactly, giving a compact complex surface B2/Γ, called a ball quotient.
Similarly, let Γ ⊂ PO(1, 4) be a discrete, torsion-free subgroup of the pro-
jectivized group of Lorentzian isometries of R1,4. Then Γ acts freely on real
hyperbolic space

H4 := P{v ∈ R1,4
∣∣ v · v > 0}.

If it acts cocompactly, the quotient H4/Γ is a compact hyperbolic manifold.
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8. Blow-ups and blow-downs

We now describe a very important operation, which can be defined on
either a smooth 4-manifold or a complex surface, called blowing up. First
we describe the complex manifold case.

Definition 8.1. Let S be a complex surface, p ∈ S a point. Let (x, y) be
local holomorphic coordinates in a neighborhood U 3 p = (0, 0) and set
U∗ = U − {p}. Consider the holomorphic map

U∗ → U × CP1

(x, y) 7→ ((x, y), [x : y]).

We define BlpU to be closure of the image of U∗. There is a holomorphic map
π : BlpU → U projecting to the first coordinate and we define the exceptional
curve to be π−1(p). Note that π : BlpU − E → U∗ is an isomorphism. The
blow-up of BlpS is defined to be the union of BlpU and S − {p} along the
common open set U∗.

Just as in the local case, we have a map π : BlpS → S for which π defines
an isomorphism from BlpS − E → S − {p} and E 7→ {p}.

Proposition 8.2. As an operation on smooth manifolds, BlpS = S#CP2 is
the connect-sum with a copy of the complex projective plane, with its negated
orientation, and E represented by a line in CP2.

Proof. The proposition follows if we can show CP2 \B4 is diffeomorphic to
π−1(U) with U a contractible holomorphic coordinate chart as above.

The blow-up Bl(0,0)C2 is visibly the total space of the tautological line

bundle O(−1) → CP1, with E the zero-section. A Hermitian metric on

O(−1) gives an isomorphism O(−1)→ O(1) of complex line bundles. Thus
Bl(0,0)C2 has an orientation-reversing diffeomorphism to the total space of
O(1), with E being identified to the zero section. Finally, O(1) can be
identified with the lines in CP2 through x, minus x, so a neighborhood of
the zero section is the complement of a ball in CP2 containing x. �

Corollary 8.3. E2 = −1.

Remark 8.4. An alternate topological construction of the blow-up is to
excise a 4-ball B4, then collapse the boundary ∂B4 = S3 along the Hopf
fibration S3 → S2, through it is less clear from this perspective why the
result is a manifold. The resulting collapsed sphere is identified with E.

Definition 8.5. Let C ⊂ S be a complex curve, or more generally an

effective divisor. The strict transform in Ĉ ⊂ Blp(S) is the closure of
π−1(C − {p}) in Blp(S). The pullback π∗C is defined as follows: If f is
a local holomorphic function for which C = V (f), then π∗C is the divisor
described by the vanishing locus of the function π∗f = f ◦ π.

Remark 8.6. When C does not contain p, its strict transform and its
pullback are equal.
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Example 8.7. Let L ⊂ C2 be a line through the origin in C2, i.e. L =

{(λx0, λy0) : λ ∈ C} Then, the strict transform L̂ ⊂ Bl(0,0)C2 is isomorphic
to L, and passes transversely through a unique point ((0, 0), [x0 : y0]) ∈ E
and so we can think of E as “separating out the tangent lines” through the
point (0, 0). On the other hand the pullback π∗L is the vanishing locus of
the function y0x−x0y on Bl(0,0)C2 ⊂ C2×CP1. By an easy local coordinate
computation, this function vanishes to first order along E. So π∗L = L+E.

Exercise 8.8. Show that [π∗C] = π∗[C] i.e. the pullback of a divisor repre-
sents the pullback of the fundamental class of that divisor.

Warning: The pullback is well-defined on cohomology, but the strict
transform isn’t! For instance, take two lines L1 and L2 in CP2, the first one
passing through p and the second one not. Then

[L̂2] = π∗[L2] = π∗[L1] = [L̂1] + [E]

Definition 8.9. The multiplicity mp(C) of an effective divisor C at a point
p is the intersection number of C with a generic line passing through p, in
a local coordinate chart.

Proposition 8.10. We have H2(Blp(S),Z) = π∗H2(S,Z)⊕ ZE and a de-

composition π∗C = Ĉ +mp(C)E.

Proof. As an abelian group, the decomposition of H2(Blp(S),Z) follows al-
most immediately from the Mayer-Vietoris exact sequence. Next we observe
that π∗ is an isometry for the intersection form: Given real surfaces Σ1 and
Σ2 in S, we may perturb them to ensure they intersect transversely and nei-
ther passes through p. Then the signed sum of intersection points between
Σ1 and Σ2 is unchanged by pullback, since in this case, π∗[Σi] = [π−1(Σi)].
By perturbing, we also see that ZE is orthogonal to π∗H2(S,Z).

Let f(x, y) =
∑
aijx

iyj be a series expansion about p of a holomorphic
function f satisfying V (f) = C. Then mp(C) is the degree of the lowest
order monomial appearing in f . By making a linear change of coordinates,
we may as well assume this lowest order term is xmp(C). Taking local coor-
dinates (x, µ) with µ = y/x on the blow-up BlpS, we see that the largest
power of π∗f(x, y) = f(x, xµ) divisible by x is mp(C) and hence V (π∗f)
contains E with multiplicity exactly mp(C). �

Corollary 8.11. We have Ĉ2 = C2 −mp(C)2.

Remark 8.12. Let Σ be a real surface smoothly embedded in a complex
surface S and consider the blow-up Blp(S). By isotoping Σ, we can ensure
that the tangent space TpΣ is a complex-linear subspace of TpS, so we can

still define the notion of a strict transform Σ̂.

Exercise 8.13. Consider the cubic curves Cnode := V (y2 − x3 − x2) ⊂ C2

and Ccusp := V (y2−x3) ⊂ C2. Describe the strict transforms of these curves
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after blowing up at the origin. Consider the projective closures in CP2: This
means homogenize these cubics using powers of z, and consider the vanishing
locus of the homogenized cubic in projective coordinates [x : y : z]. What are
the self-intersection numbers of the strict transforms?

Note that in the smooth world, BlpS and BlqS are the same thing: They

are both connect sums of S with CP2. On the other hand, in the word of
complex manifolds, they may be different. For instance, consider the blow-
up Blp,q,rCP2 at three distinct points of CP2. If these points are collinear,

then the strict transform L̂ = π∗L − E1 − E2 − E3 of the complex line L

passing through them has self-intersection L̂2 = −2. But deforming the
points slightly, the points are no longer collinear, and this cohomology class
will not be represented by any holomorphic curve.

Proposition 8.14. Consider the blow-up π : Ŝ = Blp(S) → S at a point.
We have K

Ŝ
= π∗KS + E.

Proof. Recall that the sheaf KS assigns to an open set U 7→ KS(U) the
holomorphic 2-forms on U . Near p, the holomorphic line bundle KS has a
local frame of the form ωp = dx dy. Thus, in local coordinates (x, µ = y/x)
on the blow-up, we have

π∗(dx dy) = dx d(xµ) = x dx dµ

which vanishes to first order along E. Conversely, a section of K
Ŝ

vanishing
to first order along E is the pullback of a section of KS . We conclude that
there is an isomorphism

π∗KS
∼= the subsheaf of sections of K

Ŝ
vanishing along E

∼= K
Ŝ
⊗O(−E)

where the isomorphism from the second line to the first is to multiply by
the global section sE of O(E) vanishing along E. �

Next, we discuss the reverse to blowing up, algebraically and smoothly.

Theorem 8.15 (Castelnuovo Contractibility Criterion). Let S be a smooth
complex surface and let E ⊂ S be a holomorphic CP1 for which E2 = −1.
Then there is a holomorphic map π : S → S of smooth complex surfaces
which is an isomorphism away from E and contracts E to a point p. We
call π the blow-down of E.

Exercise 8.16 (For the advanced algebraically-minded student). Prove the
Castelnuovo contractibility criterion for projective surfaces, using the follow-
ing strategy: Use the Serre vanishing theorem 7.2 to construct a line bundle
L = O(H) associated to a hyperplane section, for which H i(S,L) = 0 for
i > 0. Define a := L · E > 0. Consider the various short exact sequences

0→ O(H + (k − 1)E)→ O(H + kE)→ O(H + kE)
∣∣
E
→ 0
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for k = 1, . . . , a and take their long exact sequences. Use these long exact
sequences to show that the line bundle O(H+aE) has a section not vanishing
along E, and that sections of O(H +aE) separate points and tangents away
from E. Conclude that there exists a map S → S to a possibly singular
surface which is an isomorphism away from E and contracts E 7→ p to a
point. Finally, show that S is smooth by identifying the Zariski cotangent
space mp/m

2
p with the global sections of O(−E)/O(−2E) = O(−E)

∣∣
E

.

Similarly, given a smooth 2-sphere E ⊂ X in an oriented smooth 4-
manifold for which E2 = −1, we have a blow-down X → X to a smooth
manifold which is differentiable, contracts E to a point, and is a diffeomor-
phism elsewhere. It can be constructed by noting that a tubular neighbor-
hood of E is an oriented disc bundle over S2. Such disc bundles are uniquely
classified by an integer, equal to the self-intersection of the zero-section. So
a tubular neighborhood of E is diffeomorphic to a neighborhood of the zero-
section of the tautological bundle O(−1)→ P1, which has an identification
O(−1) = Bl(0,0)C2 and thus a blow-down to C2.

Remark 8.17. Unlike in the complex world, in the smooth world, we can
also blow down a smooth 2-sphere E ⊂ X for which E2 = −1. For instance,
reverse the orientation on X so that E2 = −1, then blow down, then reverse
orientation again. Smoothly, there is no reason why we should be able to
undo the operation X 7→ X#CP2 but not X 7→ X#CP2. So fair warning
to the topologists: The second operation, and its inverse, have no complex-
analytic meaning.

Exercise 8.18. Let E ⊂ S be a holomorphic CP1 in a complex surface S for
which E2 = 1. Prove that there is no operation in the category of complex
manifolds which gives, as a 4-manifold, the smooth blow-down of E.

9. Spin and Spinc groups

We now return to some differential geometry. But there is quite a bit of
linear algebra with which you may be unfamiliar. So we review here the
theory of Clifford algebras. Let V , || · || be an inner product space. We will
usually assume that the inner product is positive-definite.

Definition 9.1. The Clifford algebra Cl(V ) is the quotient of the tensor
algebra T (V ) :=

⊕
n≥0 V

⊗n by the two-sided ideal generated by all elements

of the form v ⊗ v + ||v||21.

Since the ideal is generated by even elements of T (V ), the Clifford algebra
inherits a Z2-grading: Cl(V ) = Cl0(V )⊕Cl1(V ). Let ε : Cl(V )→ Cl(V ) be
the map which acts on Cli(V ) by multiplication by (−1)i. It is an algebra
homomorphism. Choosing an orthonormal basis (e1, . . . , en) of V , we get a
basis of Cl(V ) give by ei1 · · · eik with i1 < · · · < ik. Note that e2

i = −1 and
eiej = −ejei.
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Proposition 9.2. Consider the degree filtration on Cl(V ) induced by the
degree filtration on T (V ). Its associated graded grCl(V ) =

∧• V is canoni-
cally isomorphic to the exterior algebra on V .

Proof. The top degree part of v ⊗ v + ||v||21 = 0 is simply v ⊗ v = 0 which
generates the relations of the exterior algebra (i.e. v ∧ v = 0). So

∧• V is
certainly a quotient of grCl(V ), with ei1 · · · eik mapping to the (residue of)
ei1 ∧· · ·∧eik . But since Cl(V ) and grCl(V ) have the same dimension, equal
to the dimension of

∧• V , we conclude that no quotient is taken. �

Example 9.3. Cl(R) = R[x]/(x2 + 1) = C. Cl0(R) = R and Cl1(R) = iR.

Cl(R2) = R⊕ Re1 ⊕ Re2 ⊕ Re1e2

subject to the relations e2
1 = e2

2 = −1 and e3 := e1e2 = −e2e1. Then
e2

3 = e1e2e1e2 = −e2
1e

2
2 = −1. So we see Cl(R2) = H are the quaternions.

Cl0(R2) = R⊕ Re3 is a copy of C ⊂ H.

Exercise 9.4. Identify the algebra Cl(R3) = H ⊕ H. Hint: You can de-
termine the splitting by finding an idempotent element x ∈ Cl(R3). Then
identify the images of x and 1− x with copies of H.

Proposition 9.5. We have Cl(V ) = Cl0(V ⊕ R) for any V .

Proof. Letting e be a unit vector in R, the isomorphism is given by v0+v1 7→
v0 + v1e. It is easy to see this is an isomorphism of algebras. �

An important corollary for us is:

Corollary 9.6. Cl0(R4) = H⊕H.

Definition 9.7. The group Pin(V ) is the subgroup of the group of units of
Cl(V ) generated by elements v ∈ V with ||v||2 = 1. The subgroup Spin(V )
is the intersection of Pin(V ) with Cl0(V ).

Example 9.8. We claim that Spin(3) = SU(2) is the group of unit quater-
nions. To see why, first note that Spin(3) ⊂ Cl0(R3) = Cl(R2) = H is some
subset of the quaternions. For instance,

Cl0(V ) = R⊕ Re1e2 ⊕ Re2e3 ⊕ Re3e1

and Spin(3) is generated by all products vw with v, w ∈ R3 satisfying ||v|| =
||w|| = 1. Fixing v = e1 and varying over all choices of w in the unit circle
of Re1 ⊕ Rx, x ∈ R3 gives all 1-parameter subgroups S1 ⊂ S3 of the unit
quaternions. These subgroups cover all of S3. Conversely, by choosing a
basis with v = e1 we see that anything of the form vw is a unit quaternion,
which is already closed under multiplication.

Example 9.9. We claim that Spin(4) = SU(2)× SU(2). Note

Spin(4) ⊂ Cl0(R4) = Cl(R3) = H⊕H.
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For any copy of R3 ⊂ R4, the resulting identification Cl0(R4) = Cl(R3),
gives an inclusion SU(2) = Spin(3) ↪→ Spin(4) and a direct computation
shows that these copies of SU(2) generate all of S3 × S3 ⊂ H⊕H.

Here is an alternative, though related proof that SU(2) × SU(2) is the
universal cover of SO(4): Identify SU(2) with the unit quaternions. Then
we have an action of “left and right copies” SU(2)L×SU(2)R on H = R4 by
left- and right-multiplication of unit quaternions. These actions preserve the
quaternionic norm and surject onto SO(4). The subgroup acting trivially is
the diagonal copy ±(1, 1) of Z2.

Proposition 9.10. There is a homomorphism Spin(n)→ SO(n) with ker-
nel Z2. Furthermore if n ≥ 3, then Spin(n) is the universal cover of SO(n).

Sketch. We claim that the action of Spin(V ) via conjugation on Cl(V )
preserves V ⊂ Cl(V ) and acts in an orientation-preserving manner. Let
||u|| = 1, u ∈ V so that u−1 = −u. Then conjugation acts by

x 7→ uxu−1 = −uxu = −u(−ux− 2x · u) = −x+ 2u(x · u) = −Rux
where Ru ∈ O(V ) is the reflection in the hyperplane orthogonal to u. So
there is a homomorphism Pin(V )→ O(V ) sending generators u, ||u|| = 1 to
negated reflections. This gives a homomorphism Spin(V )→ SO(V ) sending
generators u1u2 7→ (−Ru1)(−Ru2) = Ru1Ru2 to the composition of two
reflections. Every element of SO(V ) is a composition of reflections, and
thus Spin(V )→ SO(V ) is surjective.

The kernel is the intersection of the center of Cl(V ) with Spin(V ), since
u acts trivially on V ⊂ Cl(V ) iff it commutes with any element of V iff it
commutes with all of Cl(V ). When n is odd, the center is generated by
1, e1 · · · en and when n is even, it is generated by 1 and so in either case, the
intersection of the center with Cl0(V ) is R. Thus, the kernel is {±1}.

It is not hard to show that Spin(n) → SO(n) is a non-trivial covering
map. Since π1(SO(n)) = Z2 for n ≥ 3, we conclude that Spin(n) is in fact
the universal cover. �

Remark 9.11. Here is one way to think about the group Pin(n). A reflec-
tion is determined by either of two unit vectors ±u. In the group O(n) we
don’t distinguish the isometry of Rn gotten by reflecting in u vs −u. But
in Pin(n), we do make this distinction. There are two ways to make this
distinction: A smart way and a stupid way. The stupid way (which gives
Z2 × O(n)) is to have the square of the reflection in u be the identity and
the smart way (which gives Pin(n)) is to have the square of the reflection
in u be a non-identity central element. Then Spin(n) are the elements of
Pin(n) whose underlying isometry is orientation-preserving.

Definition 9.12. The group Spinc(V ) is the subgroup of Cl(V )⊗R C gen-
erated by Spin(V ) and the unit circle in C. Since the scalars in Spin(V ) are
{±1}, we have an isomorphism

Spinc(V ) = Spin(V )×{±1} S
1.
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Note that the quotient of Spinc(V ) by its center is also SO(V ). We now
start to manifold versions of the above linear algebraic constructions.

Example 9.13. Spinc(4) ⊂ U(2)× U(2) is the subgroup of pairs (α, β) for
which det(α) = det(β) ∈ S1.

Definition 9.14. Let (X, g) be an oriented smooth Riemannian manifold
of dimension n so that TX is the associated bundle of a principal SO(n)-
bundle P → X. A spin structure (resp. spinc structure) on X is a lift of P

to a principal Spin(n)-bundle P̃ .

Proposition 9.15. X admits a spin structure if and only if w2(X) = 0.
When w2(X) = 0, the spin structures is a torsor over H1(X,Z2).

Proof. Consider the transition functions tij : Ui ∩ Uj → SO(n) of the prin-
cipal SO(n)-bundle P . Lift the transition functions arbitrarily

t̃ij : Ui ∩ Uj → Spin(n).

There are two such lifts for every i, j. Define

(t̃ijk) = (t̃ki ◦ t̃jk ◦ t̃ij) ∈ C2
U(X,Z2)

Then ∂(t̃ijk) = 0 is a Cech cocycle and choosing other lifts of tij change

(t̃ijk) by a coboundary. So we get a well-defined cohomology class [(t̃ijk)] ∈
H2(X,Z2) which equals w2(TX) = w2(X). More generally, this procedure
computes w2(E) for any vector bundle.

So w2(X) = 0 if any only if (t̃ijk) is a coboundary. In this case, there exist

lifts t̃ij for which all t̃ijk = 1 i.e. the functions t̃ij define a lifting to a Spin(n)
bundle. Fix one such lift. The other lifts satisfying the cocycle condition are
identified with the cocycles (sij) ∈ C2

U(X,Z2) via (t̃ij) 7→ (sij t̃ij). Finally,
two such lifts give isomorphic spin bundles if and only if they differ by the
coboundary of a 1-chain, corresponding to post-composing the trivializations
over Ui with an element of Z2. �

Theorem 9.16. Assume n is even. Then Cl(V ) has a unique nontrivial,

irreducible, finite dimensional complex representation S of dimension 2n/2,
called the spin representation. In fact, Cl(V )⊗R C = End(S).

Example 9.17. We have that Cl(R2) = H which has an irreducible complex
representation of dimension 2 by sending

1 7→ I i 7→ σ1 :=

(
0 i
i 0

)
j 7→ σ2 :=

(
i 0
0 −i

)
k 7→ σ3 :=

(
0 1
−1 0

)
.
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We call σi the Pauli matrices. Theorem 9.16 actually follows inductively
from this base case. At the next step of the induction, we have an isomor-
phism Cl(R4) = End(C2 ⊗ C2) by sending

e1 7→ γ1 := 1⊗ σ1

e2 7→ γ2 := 1⊗ σ2

e3 7→ γ3 := σ1 ⊗ iσ3

e4 7→ γ4 := σ2 ⊗ iσ3.

These 4× 4 matrices γi are called the Dirac matrices.

Exercise 9.18. Verify that the above gives a representation of Cl(R4).
Write down the next step of the induction to identify

Cl(R6)⊗R C = End(C2 ⊗ C2 ⊗ C2).

Hint: Figure out how to continue the above pattern.

Proposition 9.19. Suppose n is even. As a Cl0(V )-representation, S splits
into a direct sum S = S+⊕S− of two irreducible representations, and Cl1(V )
acts by switching these two summands.

Proof. Consider the element

ωC := ib
n+1
2
ce1 · · · en ∈ Cl(V )⊗R C

which satisfies ω2
C = 1. Since ωC squares to the identity, there is an

eigenspace decomposition S = S+ ⊕ S− into ±1 eigenspaces for the action
of ωC on S. Note that ωC commutes with Cl0(V )⊗R C but anti-commutes
with Cl1(V )⊗R C because n is even. In other words, Cl0(V )⊗R C acts by
preserving S+, S− individually whereas Cl1(V )⊗R C acts by switching S+,
S− because ωC(g0 + g1) = (g0 − g1)ωC. �

Remark 9.20. Given a Z2-graded algebra, the above structure is sometimes
called a super-representation.

Warning: The situation in dimension n = 4 (and also n = 2) is confusing
because a number of coincidences occur. The dimension of S happens to
equal 24/2 = 22 = 4. We emphasize: This 4 has nothing to do with the
fact that n = 4. In general the dimension of the spin representation is some
power of 2 which is much, much larger than n.

Note that Spin(4) ⊂ Cl0(R4) is isomorphic to SU(2) × SU(2). Then
S+, S− are two complex representations of Cl0(R4), both of dimension 2.
Restricting, we get a representation of SU(2)× SU(2) on S+⊕ S− which is
the obvious one.
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10. Spin bundles and Dirac operators

We now wish to transport these structures to a manifold, taking V = TpX.
The fundamental issue

Definition 10.1. Let (X, g) be a Riemann manifold. Its Clifford bundle
Cl(X) := Cl(T ∗X, g) is a vector bundle constructed by taking the Clifford
algebra of each cotangent space with respect to the metric g. As a vector
bundle, we have an isomorphism Cl(X) =

∧• T ∗X but the ring structure is
different.

Remark 10.2. Cl(X) is the space of global sections of a sheaf Cl of asso-
ciative rings; multiplication of two sections of Cl(U) over an open set U is
given by fiberwise Clifford multiplication.

Definition 10.3. Let P̃ → X be a lift of the principal SO(n)-bundle P → X
for (T ∗X, g) to a principal Spin(n)-bundle. The associated bundle

P̃ ⊗Spin(n) S

is called the spinor bundle S. The sections H0(X,S) are called spinors.

Proposition 10.4. The spin bundle S has the natural structure of a module
over the Clifford bundle Cl(X).

Proof. Consider the map Cl(Rn)⊗S → S given by the action of the Clifford
algebra: x ⊗ s 7→ x · s. This map is actually a homomorphism of Spin(n)-
representations by viewing Cl(Rn) as a representation via conjugation. So
we get a map of associated bundles

P̃ ×Spin(n) (Cl(Rn)⊗ S)→ P̃ ×Spin(n) S.

Tensoring commutes with taking associated bundles, giving an action of

P̃ ×Spin(n)Cl(Rn) on S. Finally, note that P̃ ×Spin(n)Cl(Rn) = Cl(P̃ ×Spin(n)

Rn) = Cl(T ∗X) giving an action of the Clifford bundle on S. �

As on any Riemannian manifold, P has a natural connection—the Levi-

Civita connection. This connection lifts to P̃ : Since P̃ → P is a covering
map, parallel transports lift uniquely. In turn, the associated bundle S
admits a connection which we denote by ∇LC .

Definition 10.5. A connection on the spin bundle S is Clifford if

∇(x · s) = x · ∇(s) +∇(x) · s
i.e. Clifford multiplication is parallel. ∇ = ∇LC is an example.

Proposition 10.6. The Clifford connections are a torsor over Ω1(X).

Proof. The difference α = ∇ − ∇LC of two connections defines a global
section α ∈ Ω1 ⊗ End(S)(X). Since ∇LC is Clifford, the condition that ∇
be Clifford implies α(ei · s) = ei · α(s). We have End(S) = Cl(X)⊗R C i.e.
α is a Clifford bundle-valued one-form which commutes with the action of
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Clifford multiplication. This is the same as a one-form valued in the center
of the (complexified) Clifford bundle, which is just a one-form on X. �

Definition 10.7. Let ∇ be a Clifford connection on S and let s ∈ S(U) so
that ∇(s) ∈ S⊗ Ω1(U). The Dirac operator /∂∇ : H0(S)→ H0(S) is

/∂∇(s) :=
∑

ei frame

ei · ∇e∗i (s)

where ei· denotes Clifford multiplication by a frame {ei} of T ∗U and {e∗i }
is the dual frame of the tangent bundle TU . Write /∂ = /∂∇LC .

Exercise 10.8. Show the Dirac operator is well-defined.

Any Clifford connection ∇ = ∇+⊕∇− is a sum of connections w.r.t. the
half-spin decomposition S = S+⊕S− because ∇LC respects this decomposi-
tion, and wedging with α ∈ Ω1(X) sends each of S± → S±⊗Ω1. Since ei lies
in Cl1(X), we have that /∂∇ acts by switching sections S+(U) and S−(U).

Example 10.9. Consider X = R4 with the standard metric. Then S is a
trivial complex vector bundle of rank 4 (with say frame s1, s2, s3, s4) and
the connection ∇LCei is just the directional derivative. Following Example

9.17, the splitting C2 ⊗ C2 = S+ ⊕ S− is given by the ±1-eigenspaces of

γ5 := ωC = −γ1γ2γ3γ4 = −σ3 ⊗ σ3 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0


which are

S+ = C(s1 − s4)⊕ C(s2 + s3)

S− = C(s1 + s4)⊕ C(s2 − s3).

Write a section ψ = ψ1s2 + ψ2s1 + ψ3s3 + ψ4s4. Then the dirac equation
/∂ψ = 0 is the system of four first order differential equations

γ1ψx1 + γ2ψx2 + γ3ψx3 + γ4ψx4 = ~0.

Taking the square of the Dirac operator, we get that

/∂
2
ψ =

∑
i,j

γiγjψxixj =
∑
i,j

−(ei · ej)ψxixj = −
∑
i

ψxixi = −∆ψ

is the coordinate-wise Laplacian. Here the key was that ∇ei and ∇ej are
the partial derivatives, and hence commute.

Proposition 10.10. The standard dirac operator /∂ is self-adjoint.

Note that this only makes sense by putting a hermitian metric on the spin
bundle S. There is a natural Pin(n)-invariant metric unique up to scaling
on S, and hence a metric also on S. In particular, Clifford multiplication by
a unit vector defines an isometry of the spin bundle.
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Historical Tangent: We now discuss the historical relevance of the
Dirac operator, which solved a number of outstanding problems in quantum
mechanics. We note though that for actual applications to our spacetime,
we should work with Cl(R3,1) rather than Cl(R4). This sign changes alter
structure constants defining the Clifford algebra, and affect the γ-matrices
by various factors of i.

Recall from quantum mechanics the Schrödinger equation:

i∂tψ = (− 1
2m∆ + V )ψ

where m is the mass, ∆ = ∂2
x+∂2

y+∂2
z , and V is the “potential”—an ambient

real-valued function on R3,1 which heuristically describes “how unpleasant”
it is for a particle to be at that point in spacetime. The physical interpreta-
tion of the wavefunction ψ is that at a fixed time t, the probability density
that the particle is at a point x is given by |ψ(x, t)|2.

Example 10.11. A simple example is the infinite potential well:

V (x, y, z, t) =

{
0 if |x|, |y|, |z| < 1
∞ if otherwise.

It is “infinitely unpleasant” for the particle to lie outside the cube centered
at the origin, and so ψ(x, y, z, t) = 0 except on the inside of the cube.

When, as above, V doesn’t depend on time, we can consider stationary
solutions whose time-dependence is minimal: ψ(x, y, z, t) = e−iEtψ(x, y, z)
where E is call the energy. This gives, the so-called time-independent
Schrodinger equation

Eψ = (− 1
2m∆ + V )ψ

with ψ = ψ(x, y, z) which no longer depends on time.

Example 10.12. Consider a hydrogen atom, with one proton and one elec-

tron. The (time-independent) potential is V = −1/r, r =
√
x2 + y2 + z2.

Physically, this means the electron is free (V ≈ 0) when r � 0: It acts as
though it were in a vacuum with no potential at all. But when r is small,
V � 0 which means that the electron likes being close to the proton—this
is true because they have opposite charges.

Exercise 10.13. Solve the time-independent Schrodinger equation for the
hydrogen atom. Hint: Rewrite the Laplacian ∆ in terms of spherical coor-
dinates, and assume that ψ(x, y, z) = R(r)Φ(φ)Θ(θ) factors into functions
of the three spherical coordinates. You will find that R(r) depends on an
integer n called the principal quantum number, that Φ(φ) depends on an
` ∈ {0, . . . , n − 1} called the orbital quantum number, and that Θ(θ) de-
pends on an m ∈ {−`, . . . , `} called the magnetic quantum number.

Example 10.14. When (n, `,m) = (1, 0, 0), the electron is in its lowest
energy eigenstate. The probability density for the location of the electron is
spherically symmetric with exponential radial decay.
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The Pauli exclusion principle states that when there are multiple elec-
trons, they cannot occupy the same eigenstates. Thus, assuming no inter-
action between electrons, there is a tendency for the electrons in an atom
to successively fill eigenstates, in increasing order of energy. Up to a criti-
cal factor of 2, this approach is largely successful at predicting the periodic
table, though the above exercise will show that the energy depends only on
the principal quantum number n, which does not agree with experiment.

Problem 1: The Schrodinger equation is not relativistically invariant:
The equation won’t give the same wavefunction ψ under a change of coor-
dinates in SO(3, 1), also called a Lorentz transformation. This is clear, for
instance, because the Schrodinger equation is first order in t, but second
order in the spatial variables x, y, z.

Problem 2: What explains the fact that each orbital with fixed (n, `,m)
can accommodate two, as opposed to one, electron?

These problems are simultaneously resolved by Dirac’s equation, which
also explains other physical phenomena such as antimatter. We now take
the wavefunction ψ ∈ H0(R3,1,S) to be a spinor. An electromagnetic vector
potential is a one-form A ∈ H0(R3,1,Ω1) usually considered up to exact
one-forms. Writing A = A1dx+A2dy +A3dz + φdt we have

F := dA =
1

2

(
dx dy dz dt

)
0 −Bz By −Ex
Bz 0 −Bx −Ey
−By Bx 0 −Ez
Ex Ey Ez 0



dx
dy
dz
dt


so that curl( ~A) = ~B and div(φ) = ~E are potentials for the magnetic and
electric fields, respectively. Two of the four Maxwell equations are encoded
by dF = 0, and the remaining two Maxwell equations are d(∗F ) = J where
J = (jx, jy, jz, q) is the four-current density, consisting of the classical cur-

rent density ~j and the charge density q. In a vacuum J = 0, this gives the
Maxwell equations as dF = d(∗F ) = 0 i.e. F is a harmonic 2-form.

Definition 10.15. The Dirac equation (for a particle of mass m in the
presence of a potential one-form A) is the spinor equation

(i/∂A +mω)ψ = 0.

Here ω = ωC acts on positive spinors by 1 and negative spinors by −1 and
/∂A := /∂∇ where ∇ = ∇LC +A.

Remark 10.16. The Dirac equation is relativistically invariant essentially
by the computation that /∂A is well-defined, depending only on the metric,
for any one-form A ∈ Ω1(X) on a spin manifold X.

How does the Dirac equation help solve our periodic table problem? Es-
sentially, in the non-relativistic limit, a solution to the dirac equation will
satisfy ψ− = g·ψ+ for some explicit element g ∈ Cl(R3,1) and so the equation
reduces to an equation on the positive spinor ψ+, called the Pauli equation.
The eigenstates of the Pauli equation are given by the tensor product of
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an eigenstate of the usual Schrodinger equation with an eigenvector for a
two-dimensional quantum system

Cv↑ ⊕ Cv↓.

with two eigenstates, usually called spin up and spin down, on which the
Pauli matrices act. Thus, there is a fourth spin quantum number, equal to
either ±1

2 which allows for two electrons in each (n, `,m) orbital type.

11. Rokhlin’s theorem

Returning to the world of math, we now have the tools to prove:

Theorem 11.1 (Rokhlin’s Theorem). Let X be a closed, oriented, spin
4-manifold. The signature is divisible by 16.

Proof. The proof goes in two steps. Let /∂
+

: S+(X) → S−(X) be the re-
striction of the dirac operator to positive spinors. The first step is to show

that ind(/∂
+

) = −sig(X)/8. The second step is to show that this index is
always even. The symbol of the Dirac operator is

σ(/∂) : π∗S→ π∗S
s 7→

∑
i yiei · s

or more canonically, at a point (p, α) ∈ T ∗X, the symbol acts on π∗S as the
Clifford multiplication α · −. Away from the zero section α = 0, this map is
invertible, because its square α · α = −||α||21 is. Suppose for now just that
dimX = 2n is even.

Lemma 11.2. The difference of the Chern characters of the spin bundles
is ch(S+)− ch(S−) =

∏n
i=1(exi/2− e−xi/2) where ±xi are the Chern roots of

the complexified cotangent bundle.

Proof. First, by (the real version of) the splitting principle we may assume

T ∗X ⊗R C = (L1 ⊕ L1)⊕ · · · ⊕ (Ln ⊕ Ln)

with the natural action of complex conjugation acting by switching sections
of Li and Li. We deform the metric on T ∗X so that it is a direct sum of
metrics on each summand (Li ⊕ Li)R and the transition functions lie in

SO(2)× · · · × SO(2) ⊂ SO(2n).

The spin structure corresponds to taking consistent square-roots for the
transition functions for all Li or equivalently finding complex line bundles
Mi for which Mi ⊗ Mi = Li. With respect to this subgroup, the spin
representation is the tensor product

S = (M1 ⊗R · · · ⊗R Mn)⊗R C = (M1 ⊗R C)⊗C · · · ⊗C (Mn ⊗R C)
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with ωC acting on each factor M1⊗RC = M1⊕M1 = M1⊕M−1
1 by (1,−1).

These facts follow from the inductive description of the spin representation
in even dimension 2n. We conclude that

S+ =
⊕

ai∈{±1}∏
ai=1

Ma1
1 ⊗ · · · ⊗M

an
n and S− =

⊕
ai∈{±1}∏
ai=−1

Ma1
1 ⊗ · · · ⊗M

an
n .

Since c1(Mi) = xi/2 we conclude that ch(S±) is the sum of all terms in

the expansion of
∏n
i=1(exi/2 + e−xi/2) with an even, resp. odd, number of

minuses. We conclude that

ch(S+) =
∏n
i=1(exi/2 + e−xi/2) and ch(S−) =

∏n
i=1(exi/2 − e−xi/2).

�

Now, we can apply Atiyah-Singer. We have by Lemma 11.2 that

ind(/∂
+

) = (−1)n
∫
X

ch

eul
(S+ − S−)td(TX ⊗ C)

=

∫
X

(ch(S+)− ch(S−))

n∏
i=1

xi
(1− exi)(1− e−xi)

=

∫
X

n∏
i=1

xi(e
xi/2 − e−xi/2)

(1− exi)(1− e−xi)
= (−1)n

∫
X

n∏
i=1

xi

exi/2 − e−xi/2
.

which vanishes unless n is even, i.e. 4 | dimX. When n = 4, we have

ind(/∂
+

) =

∫
X

(1− x2
1/24)(1− x2

2/24) =

∫
X

(−c2
1 + 2c2)/24 = −sig(X)/8

where the last equality follows from Lemma 11.3.

Lemma 11.3 (Hirzebruch Signature Theorem). Let X be an oriented smooth
4-manifold. We have c2

1 − 2c2 = p1(X) = 3 · sig(X).

Proof. We yet again apply the Atiyah-Singer theorem (so useful!). Consider
the operator d and its adjoint d∗ acting on Ω•(X). Note that d + d∗ is a

self-adjoint operator. We define τ(ω) := ip(p−1)+n ∗ ω where dimX = 2n.

Exercise 11.4. Show τ2 = 1 and d+ d∗ anticommutes with τ .

We conclude that d+ d∗ acts by permuting the ±1-eigenspaces Ω±(X) of
τ . So we have a block form

d+ d∗ =

(
0 D
D∗ 0

)
for D : Ω+(X)→ Ω−(X) the restriction of d+ d∗. We claim that ind(D) =
sig(X). To see why, first note that

dim ker(D)− dim coker(D) = dim ker(D)− dim ker(D∗)

= dimH+(X)− dimH−(X)
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where H±(X) are the ±1-eigenspaces of harmonic forms under the action
of τ . Consider the action of τ on Hn+k ⊕Hn−k, k 6= 0. Given a basis {ωi}
of Hn−k this space has a basis {ωi, τωi} and thus the dimensions of the +1
and −1 eigenspaces on the sum are equal.

When n is even τ
∣∣
Hn = ∗ and so the ±1-eigenspaces are the self-dual and

anti-self-dual harmonic middle forms. We have

0 <
∫
X α ∧ ∗α = eigenvalue(∗)

∫
X α ∧ α

and so the ±1-eigenspaces of ∗ represent positive- and negative-definite sub-
spaces for the intersection form on Hn(X,R).

It remains to compute the index of D using the Atiyah-Singer index the-
orem. We leave this as an rather difficult exercise. �

Exercise 11.5. As in Lemma 11.2, use the splitting principle to compute
ch(Ω+) − ch(Ω−). Plug this into the index formula for D and expand the
integrand to compute ind(D) in dimensions 2n = 4, 8.

We have finished the first step of the proof of Rokhlin’s theorem. Next

we must show ind(/∂
+

) is even. This follows if we can show that

ker(/∂
+

) and coker(/∂
+

) = ker(/∂
−

)

admit quaternionic structures. Then they have even complex dimension.
First, note the spin representations S± admit quaternionic structures in

dimension 4. This is easy because the spin group Spin(4) = SU(2)×SU(2) =
S3 × S3 ⊂ H ⊕ H = S+ ⊕ S− is the product of the unit quaternions with
itself. More canonically, we have:

Exercise 11.6. Show that there is a real structure on C2 (a complex-
antilinear map c : C2 → C2 satisfying c2 = 1) such that c commutes with
the two Pauli matrices σ1, σ2. Show that there is a quaternionic structure
on C2 (a complex-antilinear map j : C2 → C2 satisfying j2 = −1) such that
j anticommutes with the two Pauli matrices σ1, σ2. Conclude that c ⊗ j is
a quaternionic structure on C2 ⊗ C2 = S which anticommutes with Clifford
multiplication by γ1, γ2, γ3, γ4 and commutes with ωC = −σ3 ⊗ σ3.

From the exercise, we conclude that there is a quaternionic structure
J := c ⊗ j on S which is compatible with the decomposition S± into ωC-
eigenspaces and anticommutes with Clifford multiplication. Consider

L : s 7→ /∂(Js) + J /∂(s).

Multiplying s by a real-valued function f , applying Liebniz, and using that
Jdf · s + df · Js = 0 we get that L is C∞-linear (over real functions). So
L defines a complex anti-linear bundle map S± → S∓ which anticommutes
with Clifford multiplication. But then L is, fiberwise, an intertwiner between
S+ and the complex conjugate of S− as spin representations. This is absurd
for SU(2)× SU(2) unless L = 0.

We conclude that /∂J = −J /∂ and so J acts on ker(/∂±). Thus, the two
spaces in question have quaternionic structures, as desired. �
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Remark 11.7. Rokhlin’s theorem generalizes, see Ochanine, to a spin man-
ifold with dimX ≡ 4 mod 8.

Remark 11.8. If H1(X,Z) has no 2-torsion, then w2(X) = 0 if and only if
the intersection form on X is even. The condition on torsion is necessary,
e.g. consider an Enriques surface. So in this setting, X is spin.

Theorem 11.9. There is no smooth sphere representing the class 3h ∈
H2(CP2,Z).

Proof. Suppose there were such a sphere Σ ⊂ CP2. Consider the blow-

up S := Blp1,...,p8CP2 at eight points lying on Σ and let Σ̂ be the strict

transform. Then Σ̂2 = 1 and so there is a smooth blow-down S → S
contracting Σ̂. The intersection form on S is that of [Σ̂]⊥ ⊂ H2(S,Z). Let
h, e1, . . . , e8 be the basis of H2(S,Z) corresponding to the pullback of the
hyperplane class, and the classes of the eight exceptional spheres. These
form an orthonormal basis, with h2 = 1 and e2

i = −1. We have

[Σ̂] = 3h− e1 − · · · − e8

and so a direct computation shows that [Σ̂]⊥ = H2(S,Z) is an even unimod-
ular lattice of signature profile (0, 8).

None of the blow-up or blow-down operations affect the fundamental
group and so π1(S) = π1(CP2) = 0. We conclude by Remark 11.8 that
S admits a spin structure. But its signature −8 is not divisible by 16, which
contradicts Rokhlin’s theorem. Thus, no such sphere Σ exists. �

Exercise 11.10. Using similar arguments, find as many degrees d as you
can for which dh cannot be represented by a smooth sphere.

12. Freedman’s theorems

We now review (without proofs!) some important historical results about
the classification of 4- and higher-dimensional manifolds.

Definition 12.1. An oriented cobordism between two oriented manifolds
X,Y is an oriented manifold M whose boundary is ∂M = X t Y . We say
that M is an h-cobordism if X,Y ↪→M are homotopy equivalences.

Theorem 12.2 (Smale). In the smooth category, any h-cobordism between
simply connected manifolds of dimension dimX = dimY ≥ 5 is a product:
M = X × I.

Theorem 12.3 (Freedman). In the topological category, any h-cobordism
between 4-manifolds X,Y is a product: M = X × I.

Remark 12.4. We won’t prove these theorems, but here is some indication
as to how Smale’s works in the smooth category. One begins with a Morse
function f : M → [0, 1] for which f−1(0) = X and f−1(1) = Y . Let
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0 < c0 < · · · < cn < 1 be the critical values of f , each one the image of just
one critical point. Choose constants ci−1 < di < ci. The sequence

(X,X1, . . . , Xn, Y )

of manifolds defined by Xi := f−1[0, di] are related by successive handle
attachments. The proof strategy is to cancel the handle attachments in
pairs until none are left, and f has no critical points. Then the gradient
flow of f will define a diffeomorphism. The h-corbordism assumption gives
that the relative homotopy groups πk(M,X) = 0 are trivial, roughly leading
to the fact that handles pair up.

Where does the dimension bound come in? The key step in handle can-
cellation is to apply the Whitney trick: If two oriented submanifolds of
complementary dimension in an ambient oriented manifold intersect trans-
versely at two points of opposite sign, then they can be isotoped until they
are disjoint. The problem is that the Whitney trick is only true in dimen-
sion at least 5. The miraculous result of Freedman is that is also works
topologically in dimension 4.

Theorem 12.5 (Thom-Pontryagin). The pontryagin classes are oriented
cobordism invariants. More precisely, the exceptional cohomology theory
ΩSO∗ for oriented cobordism satisfies ΩSO∗(pt) ⊗ Q = Q[p1, p2, · · · ]. This
ring is generated by the cobordism classes [CP2n], n > 0.

The proof of the Thom-Pontryagin theorem follows from homotopy theory
and a careful study of the stable normal bundle. All embeddings of X
(or cobordisms from X to Y ) into RN are homotopic for large enough N .
This ensures that the classifying map of the stable normal bundle to an
appropriate classifying space eventually stabilizes in stable homotopy theory,
and that cobordant manifolds give the same stable homotopy class.

So we get a ring homomorphism from the cobordism ring to the stable
homotopy groups of the classifying space (strictly speaking the relative ho-
motopy groups of the tangent space of the classifying space, relative to the
zero section). Conversely, if the element of the stable homotopy group asso-
ciated to the manifold X equals zero, it is possible, using the homotopy and
transversality results, to construct a manifold M whose boundary is X.

Remark 12.6. Fixing a target T which is not a point, we declare ΩSO
p (T )

to be the smooth maps f : Xp → T from a closed oriented boundaryless
p-manifold Xp, modulo the equivalence relation (Xp, f) ∼ (Y p, g) if there
is an oriented cobordism Mp+1 between Xp and Y q, together with a map
h : Mp+1 → T such that h

∣∣
Xp = f and h

∣∣
Y p = g. These equivalence classes

form an abelian group with inversion given by reversing orientation on Xp

and addition given by disjoint union.
More generally, if Xp is a manifold with boundary, then we declare the

boundary of (Xp, f) to be (∂Xp, f
∣∣
∂Xp). This allows us to define a chain

complex (or dually a cochain complex) whose homology (or cohomology)
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gives ΩSO
∗ (T ) (or ΩSO∗(T )). Then ΩSO∗ defines an extraordinary cohomol-

ogy theory, i.e. it satisfies all Eilenberg-Steenrod axioms, excluding the
condition that ΩSOp(pt) = 0 for all p 6= 0.

Corollary 12.7. The signature of an oriented 4n-manifold X is a cobordism
invariant. In particular, if X = ∂M is a boundary of a 4n + 1-manifold,
then sig(X) = 0.

Proof. This follows from our proof the Hirzebruch signature theorem and
Exercise 11.5, which shows that ch(Ω+)− ch(Ω−) is expressible in terms of

pi/2(X) = (−1)i/2ci(TX ⊗C) [as are eul(X) and td(TX ⊗C) which appear
in the Atiyah-Singer index theorem]. �

Consider the following forgetful maps of equivalence classes of simply
connected manifolds:{

simply connected
smooth manifolds

}
Φ1−→

{
h-cobordism
classes

}
Φ2−→{

homotopy type +
pontryagin classes

}
Φ3−→

{
cohomology ring +
pontryagin classes

}
The h-cobordism theorem show that Φ1 is an isomorphism in dimension

n ≥ 5. Then surgery techniques and homotopy theory show that Φ2,Φ3 are
finite-to-one, and furthermore the rational pontryagin classes are invariants
of topological manifolds. This proves that any homeomorphism class of n-
manifolds contains only finitely many diffeomorphism types, for n ≥ 5. We
will not comment further on this, as it would take us somewhat far afield.

In dimension 4, we can ignore the pontryagin classes, since by the Hirze-
bruch signature theorem, the only nontrivial pontryagin class p1 encodes in
the signature of the intersection form, which is in turn encoded by the coho-
mology ring. Amazingly, the map Φ1 fails to be finite-to-one for 4-manifolds!
But Φ2 and Φ3 are one-to-one. It is not difficult to prove this for Φ3, using
elementary methods from algebraic topology:

Theorem 12.8 (Whitehead). Let X and Y be compact, simply connected,
smooth 4-manifolds. Then X and Y are homotopy-equivalent if and only if
their intersection forms are isometric.

Proof. Note that if X, Y are homotopy equivalent, they have isomorphic
cohomology rings, and hence for an appropriate choice of orientation, the
intersection forms are isometric. So the main content is the converse.

Let X ′ = X − D4 be X minus a 4-ball. Mayer-Vietoris implies that
H∗(X

′,Z) is the same as H∗(X,Z) except in degree 4, where it is zero.
Additionally, X ′ is still simply connected. We have by the Hurewicz theorem
that π2(X ′) = H2(X ′) and thus, there is a map

∨
r S

2 → X ′ from a wedge
of 2-spheres for which the fundamental class of the ith S2 maps to the ith
element ei of a basis ofH2(X ′). So

∨
r S

2 → X ′ is an isomorphism on integral
homology, and thus is a weak homotopy equivalence (again by Hurewicz).
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Since the source and target are both CW complexes, a well-known theorem
in topology says that this map is a homotopy equivalence.

We conclude that X, and similarly Y , are homotopic to the gluing of a
4-ball D4 along its boundary S3 to a wedge of two spheres

∨
r S

2. It suffices
to show that the intersection form encodes the homotopy class of the map
S3 →

∨
r S

2 and two homotopic gluings will produce homotopy-equivalent
topological spaces. Let γ1, . . . , γr be knots in S3 with γi the inverse image
of a generic point on the ith copy of S2. Then

Exercise 12.9. The linking number satisfies lk(γi, γj) = ei · ej and the
linking matrix is the unique homotopy invariant of the map S3 →

∨
r S

2.

The theorem follows. �

Finally, we Freedman’s best known theorem:

Theorem 12.10. Two simply connected, closed, oriented topological 4-
manifolds are homeomorphic if and only if (1) their intersection forms are
isometric, and (2) they have equal Kirby-Siebenmann invariant (an invari-
ant equal to 0 or 1 depending on if X × R admits a smooth structure).

Conversely, every even unimodular lattice is the second cohomology of
some topological 4-manifold. When the intersection form is odd, either
Kirby-Siebenmann invariant can be realized, and when the intersection form
is even, we necessarily have ks(X) ≡ sig(X)/8 mod 2.

The key to proving the second part is showing that there exists a fake
4-ball i.e. a topological 4-ball, bounding any homology 3-sphere. The key to
proving the first part is to verify the topological h-cobodism theorem stated
above, which relies on verifying a topological Whitney trick. This is very
hard and we won’t even begin to go into it.

Corollary 12.11. There exist compact, oriented topological 4-manifolds
with no smooth structure.

Proof. By Freedman’s theorem, there is a manifold ME8 whose intersection
form is the unique even unimodular lattice of signature (0, 8). Its signature is
sig(ME8) = −8. If ME8 had a smooth structure, it would be spin, because it
is simply connected with even intersection form. But by Rokhlin’s theorem
the signature would be divisible by 16. Contradiction. �

Remark 12.12. Note that E8 also appeared in the proof that there is no
smooth 2-sphere representing the homology class 3h ∈ H2(CP2,Z). The

boundary of a tubular neighborhood of the strict transform Σ̂ of, say, a
smooth Riemann surface Σ passing through the eight blown-up points is the
famous Poincare homology sphere. By Freedman’s theorem, it bounds a fake
4-ball and so the contraction exists in the topological category, and gives
the E8 manifold.
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13. Classification of unimodular lattices

14. An exotic R4

15. The Seiberg-Witten equations


