COMBINATORICS AND HODGE THEORY OF DEGENERATIONS OF

ABELIAN VARIETIES: A SURVEY OF THE MUMFORD CONSTRUCTION

1.

1.1.
1.2.
1.3.

2.

2.1.
2.2.
2.3.
2.4.
2.5.

3.

3.1.
3.2.
3.3.
3.4.
3.9.
3.6.

4.

4.1.
4.2.

PHILIP ENGEL, OLIVIER DE GAAY FORTMAN, AND STEFAN SCHREIEDER

ABSTRACT. We survey the Mumford construction of degenerating abelian varieties, with a
focus on the analytic version of the construction, and its relation to toric geometry. Moreover,
we study the geometry and Hodge theory of multivariable degenerations of abelian varieties as-
sociated to regular matroids, and extend some fundamental results of Clemens on 1-parameter

semistable degenerations to the multivariable setting.
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1. INTRODUCTION

In 1972, Mumford gave an analytic construction of degenerations of abelian varieties over
complete rings [44]|. It played an important role in the development of the theory of toric
varieties [36] and toroidal compactifications of locally symmetric varieties [9]. When working
over C, the basic idea is that one may view a degeneration of abelian varieties analytically, as
the quotient of an appropriate intermediate cover of the universal cover.

It is well-known that, over the complex numbers, any abelian g-fold A ~ C9/H;(A,7Z) is the
quotient of a vector space CY by a lattice Hi(A,Z) C C9 of rank 2g. Suppose that A = X; is
a general fiber of a degenerating family X — A of abelian varieties over the unit disk A C C.
Let Vz = Hi(Xy,Z). Then, there is a saturated sublattice W_1Vyz C V7 of the fundamental
group Vz = m1(X}), consisting of 1-cycles which are invariant under the monodromy of the
punctured family X* — A*. It contains a further sublattice W_9V; C W_1Vy consisting of
vanishing cycles; that is, the 1-cycles on X; which are null-homologous in X. The filtration
W_oVy C W_1Vz C WyVz = Vg defines the weight filtration.

The subgroup W_1Vz C Vz = m1(Xy) gives rise to a cover Y* — X* corresponding fiberwise
to the intermediate cover C9 ~ )N(t — Y; — X, of the universal cover, whose Galois group over
X is the graded piece grgv Vz. In general, Y; is a semiabelian variety—an algebraic torus bundle
over an abelian variety of dimension %rank gr1Vz. When W_1V7 has rank g, then we have
Y; ~ CY9/79 ~ (C*)9, and we call the degeneration mazimal.

In the case of a maximal degeneration, the intermediate cover Y* of the punctured family
admits an analytic open embedding Y* < (C*)Y9 x C* into an algebraic torus, with the map
to A* given by the projection to the second factor. Thus, by the theory of toric varieties, it is
possible to extend Y* — A* to a family Y — A. More precisely, we take a toric extension of
(C*)9 x C* for which the fiber-preserving action of grgv Vz extends to an action on the central
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fiber Yy. The quotient of Y — A by the extended action of grgv Vz produces a new model of
the degeneration with particularly nice properties, e.g. toroidal singularities.

The original paper |44] performs this construction more generally over any complete ring, cor-
responding to a possibly higher-dimensional base, and using formal algebraic geometry. Mum-
ford’s work was inspired by an influential 1959 manuscript of Tate [60] on degenerating elliptic
curves. In the late 1970’s, Nakamura and Namikawa worked out the theory in the complex-
analytic setting [47, 48, 49, 50, 51|, culminating in a method of patching together Mumford
constructions over the cones of the second Voronoi fan, to produce a relatively proper, analytic
extension of the universal abelian variety X;; — A, to a toroidal compactification of Ay.

An impressive, and notoriously technical, further advancement was the work of Faltings—Chai
[17] in the early 1990’s, who extended the Mumford construction and the theory of toroidal com-
pactifications to the arithmetic setting. In the later 1990’s, Alexeev—Nakamura [7] and Alexeev
[4] used the Mumford construction to compactify the universal abelian torsor (X;,0,) with
theta divisor, cf. Construction 6.6, and provide a modular interpretation of this compactifica-
tion, as the normalization of the closure of the space of KSBA-stable pairs (X, €©) in the proper
DM stack of log general type varieties.

1.1. Contents. The goal of this paper is to provide a “working mathematician’s guide” to the
Mumford construction. Thus, we usually work analytically over C, though we do also touch on
the question of algebraicity of Mumford constructions (Prop. 6.12). Furthermore, we largely
restrict our attention to maximal degenerations, though most of the results presented here apply
in the non-maximal case. Many of the ideas of the paper are to be found scattered through the
literature; some are difficult to find, and others appear to be new, such as Theorem 1.1.

After reviewing in Section 2 preliminary material on principally polarized abelian varieties,
their Hodge theory, their moduli, their degenerations, and toroidal extensions and compactifi-

cations of A4, we dive into the main constructions in Section 3:

Mumford constructions and examples. Using tools from toric geometry, we construct maximal
degenerations of principally polarized abelian g-folds. The constructions are presented in in-
creasing levels of generality and are broadly divided into two classes: fan constructions and
polytope constructions (see Section 1.2 for a list). The fan construction only produces a degen-
eration complex-analytically, but has the advantage of being relatively simpler, and having more
readable geometry. The advantage of the polytope construction is that it outputs a relatively
projective degeneration.

The equality of the two constructions is examined in Section 3.4, while the topology is
discussed in Section 3.2, where we analyze the weight filtration on the limiting mixed Hodge
structure of a general fiber. We also study the effect, on Mumford constructions, of a toroidal
base change and of replacing the polarization by a multiple, see Section 3.6.
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Regular matroids. We continue in Section 4 with a more detailed analysis of Mumford construc-
tions associated to regular matroids (Constr. 4.16). A matroid R is a collection of subsets of
a finite set F, encoding the notion of linear independence, of a set of vectors in a vector space
(Def. 4.1). An embedding E < F™ into a vector space over a field F, realizing this collection
of independent sets, is a realization of R. Matroids which admit a realization over any field are
reqular (Def. 4.2), though Fy and [F3 suffice.

Associated to a regular matroid R are the so-called matroidal, shifted matroidal, and trans-
versely shifted matroidal Mumford constructions, see Sections 4.2 and 4.3. Related degenerations
were explored for cographic matroids by Dancso-McBreen—Shende [22, Sec. 8.3], building on
unpublished work of Hausel-Proudfoot. Perhaps unsurprisingly, regular matroids are intimately
connected to the total space of a Mumford construction being regular, i.e. smooth. In fact, a
Mumford construction X — A* such that (i) X is regular, and (ii) over each coordinate hyper-
plane {u; =0}, i =1,..., k, of the polydisk, the vanishing cycles span a 1-dimensional space, is
necessarily a transversely shifted matroidal degeneration, and vice versa (Props. 5.3 and 5.13).

As we explain in Section 2.3, for a family f*: X* — (A*)F of g-dimensional PPAVs, the
monodromy about the i-th coordinate hyperplane defines, via the principal polarization, a sym-
metric matrix B; € Sym,, ,(Z) (Def. 2.6). The cone in Sym,, ,(R) generated by { B, ..., By} is
the monodromy cone of the family f* (Def. 2.7). Such a cone is matroidal if it is induced by an
integral realization of a regular matroid (Def. 4.6). Transversely shifted matroidal degenerations
are examples; they are of particular importance to our companion paper [27].

Theorem 1.1. Let f*: X* — (A")* be a smooth family of PPAVs of dimension g, whose
monodromy cone is matroidal (Defs. 2.7, J.6). There is a flat, K -trivial estension f: X — AF
which is a nodal morphism (Def. 5.1), and f may be assumed strictly nodal if the monodromy
about each coordinate hyperplane is imprimitive.

Moreover, given k generators of a matroidal cone, there exists a family f*: X* — (A*)* of
PPAVs whose monodromies are the specified generators, and an extension as above, which is

the restriction of a projective family over a quasiprojective variety Y to a polydisk A* C Y.

See Theorem 7.1 and Corollary 7.2, respectively, for more algebraic formulations of the first
and second statements of the above theorem.

As a particular application, the relative intermediate Jacobian fibration IJY° — (A*)19 of
the punctured universal deformation Y° — (A*)!0 of the Segre cubic Yy (Ex. 2.16) admits such
afilling IJY — A0 ~ Defy, as does the relative Jacobian fibration of the universal deformation
of a nodal curve Cy (Exs. 2.15, 4.13). The respective matroids are the Seymour—Bixby matroid
R, and the cographic matroid M*(G) of the dual graph G =I'(Cy) of Cp (Exs. 4.7, 4.3).

Nodal and semistable morphisms. Our investigations connect in a very natural way to the
notion of a semistable morphism f: X — Y, introduced by Abramovich-Karu [1] and the

more restrictive notion of a nodal morphism (Def. 5.1). The former are morphisms between
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smooth spaces X and Y, which are étale or analytically-locally a product of snc degenerations
W 2(m) = ¢ and the latter (nodal morphisms) additionally satisfy m < 2. The main result
of Adiprasito—Liu-Temkin [2] is that, for any dominant morphism f: X — Y, there is a regular
alteration Y’ — Y of the base and a birational modification of the base change X’ — X xy Y’
so that f’: X’ — Y’ is semistable. Furthermore, once semistability is achieved, further base
changes admit a functorial semistable resolution.

Once we have proven that transversely shifted matroidal degenerations are nodal morphisms,
we continue with a general analysis of the Hodge theory of semistable morphisms, in Section 5.
We define a multi-parameter analogue (Prop. 5.10) of the Clemens retraction for 1-parameter
semistable degenerations, and investigate the relationship (Prop. 5.11) between the dual complex
of the central fiber, and the graded piece grgV Vz of the weight filtration on Vz = H1 (X}, 7).

In Section 5.3, we instantiate explicitly the functorial resolution of [2, Thm. 4.4], in the case
of a base change of a nodal morphism (Thm. 5.14). We apply this resolution algorithm to
transversely shifted matroidal degenerations in Section 5.4. Refinements of these results will
play an important role in [27, Sec. 3 and 4].

The second Voronoi fan and Alexeev’s theorem. Finally, we review the work of Alexeev, Naka-
mura, Namikawa and Faltings-Chai on the extension of the universal family X; — A, over the
toroidal compactification 74;7Or associated to a distinguished fan §yor (Defs. 6.1, 6.4), whose
support is the cone 73; of positive semi-definite g X g matrices with rational null space.

We sketch a proof of Alexeev’s theorem that ];Or is the normalization of the KSBA com-
pactification of the moduli space of abelian torsors with theta divisor (X, €0), paying particular
attention to the subtle differences between Alexeev’s universal family Xy — A, and the univer-
sal family of abelian varieties X; — A, (Constr. 6.6 and Rem. 6.8).

We also provide a brief review of the extensive literature on the cones of the second Voronoi
fan, for ¢ <6 (Ex. 6.7).

1.2. Index of constructions. The various forms of the Mumford construction presented in

this paper are thus:

(3.3): Via fans, over a l-parameter base (i.e., a disk), and over a family of 1-parameter bases,
complete with respect to a fixed monodromy operator T': Hy(X,Z) — H1(Xy,Z), en-
coded by a symmetric bilinear form B € Sym? (grgv Vz)V.

3.8): Via fans, over a polydisk A¥, and over a family of such polydisks, complete with respect

( y y y
to a fixed collection of monodromy bilinear forms B; € Sym? (e Vg)V,i=1,... k.

3.11): Via fans, over the toroidal extension A, — A associated to a rational polyhedral cone

9 g
B = RZO{BI,-'ka} C 73;
(3.21): Via polytopes, over a polydisk AF, associated to a collection {b1,...,b.} of convex

piecewise linear functions RY — R with appropriate Z9-periodicity, and over a family of
polydisks, complete with respect to the associated monodromy cone B.
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(3.26): Via polytopes, over the toroidal extension A, — A]gB associated to a rational polyhedral
cone B =Rxo{B1,...,Bx} C P

(3.38): Via polytopes, as in (3.21), but where only d times the principal polarization extends
to a relatively ample line bundle on the family.

(4.16): As special cases of (3.21) and (3.38), associated to a regular matroid R of rank g, and a
hyperplane arrangement inducing this regular matroid from the set of normal vectors.

(6.5): Associated to a “tautological” version of (3.26) for a cone B € §yor of the second Voronoi
fan, giving a local analytic extension of the universal family of abelian varieties.

(6.6): As in (6.5), but giving an extension 7;‘” — X;lor of the universal family of abelian

torsors with theta divisor.

An extensive collection of examples (Exs. 3.31, 3.34, 3.35, 3.40, 4.13, 4.14, 4.20, 4.21, 5.16,
6.7), with figures, is also provided in the text, see especially Section 3.5. The first of these
(Ex. 3.31) is the prerequisite ur-example of the Mumford construction: the Tate curve, i.e. the

extension of the family C*/u? — A¥ of elliptic curves by an irreducible nodal curve.
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useful discussions.
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OdGF has also received funding from the ERC Consolidator Grant FourSurf N2 101087365. The
research was partly conducted in the framework of the DFG-funded research training group RT'G
2965: From Geometry to Numbers.

2. PRELIMINARY MATERIAL

2.1. Algebraic and analytic stacks. By a DM algebraic stack, or simply DM stack, we will
mean a separated Deligne-Mumford stack of finite type over C. Similarly, a DM analytic stack
will be a separated Deligne-Mumford analytic stack X in the sense of [62, Def. 5.2]. Thus, X is
a stack on the site of complex analytic spaces such that the diagonal is representable and finite
and there exists an analytic space Y and a surjective étale morphism Y — X. It follows that
X is locally modeled as a finite quotient of an analytic space, see |62, Prop. 5.4, and that the
analytification of a DM algebraic stack is a DM analytic stack, see [62, Lem. 5.5].

2.2. Principally polarized abelian varieties. Let .4, denote the DM stack of principally
polarized abelian varieties (PPAVs) of dimension g, over C. Since a PPAV X is uniquely
determined by its polarized weight —1 Hodge structure on H;(X,Z), the period map defines
an isomorphism Ay =~ Spy, (Z)\H, to an arithmetic quotient of a Hermitian symmetric domain
of Type III. We review this construction now.
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Definition 2.1. A Z-polarized Hodge structure (Vz, H*®*, L) of weight k is a Z-module Vz
together with an integral, non-degenerate, (—1)*-symmetric bilinear form L: V7 ® V7 — Z, and
a Hodge decomposition
Ve=V,oC= @ H
ptq=k

satisfying the following conditions:

(1) H9P = HP4 for all p+q = k,

(2) L(HP, H?7) = 0 unless p=¢, ¢ = ¢/,

(3) (—=1)kE=1/2jp=a[ (3, v) > 0 for all 0 # v € HPI.

Definition 2.2. A Z-polarized Hodge structure (Vz, H**®, L) is principally polarized if the pair-

ing L is unimodular.

Let (Vz, L) be a unimodular symplectic lattice, and consider the Lagrangian Grassmannian
LGr(Vg, L). It is the projective flag variety of isotropic g-dimensional subspaces of Vg. The
polarized weight —1 Hodge structures on (Vz, L) with a Hodge decomposition of the form
Ve = H-19 @ H%~! define an analytic open subset of LGr(V¢, L), given by

(1) {H Y c V¢ : Liy-10 =0and iL(7,v) > 0 for 0 £ v € H 10}
Given [H~%0] in (1), we may define a complex torus
X =V /(Vg + H 1),

We have canonical isomorphisms Hi(X,Z) ~ Vz and H'(X,Z) ~ V,/. Thus, the symplectic
form L € V) ANV, defines an element

LeANHYX,Z)~ H*(X,7).

The condition that H~1Y is Lagrangian for L amounts to the property that L € HY1(X) is a
Hodge class. Hence L determines a holomorphic line bundle £ — X, unique up to translation
by Pic’(X). Finally, the condition iL(%,v) > 0 ensures that any lift £ is ample, and so in fact,
X is an abelian variety (i.e. projective).

Choosing a standard symplectic basis of Vz produces an isometry (Vz, L) ~ (Z?9,-), where
729 is generated by vectors e;, f; for i = 1,..., ¢ and the unimodular symplectic form - satisfies
ei-ej:fi-fj:0andei-fj:5ij.

Definition 2.3. The Siegel upper half-space H, is the space of symmetric g X g matrices with
positive-definite imaginary part.

A choice of symplectic basis of (Vz, L) identifies (1) with H,. In a standard symplectic basis,
the Lagrangian H 1Y C Vz ® C is the span of the columns of some 2g x g period matriz

<‘;> € Matggy o (C),
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which we write in 2 x 1 block form. The condition that L € H!(X) is Hodge amounts to
the symmetry of o, while the positivity condition ¢L(7,v) > 0 amounts to the fact that the
imaginary part Im(o) > 0 is positive-definite. Hence o € H,. Changes of symplectic basis,
i.e. elements of Spy,(Z), act on the left, by 2 x 2 block matrices,

& 0) ()= ()

Renormalizing the generators of our Lagrangian subspace to be dual to the e; with respect to the
symplectic form corresponds to right multiplication by (Co + D)~!. So we get the Lagrangian
corresponding to (Ao + B)(Co + D)~ € H,, which is the standard action of Spy,(Z) on H,,.

Definition 2.4. The pair (X, L) is called a principally polarized abelian variety, or PPAV.

For any representative £ € Pic(X) of L, we have h®(X,£) = 1, and so there is a unique
divisor © € |L| called the theta divisor.

It follows from the above discussion that the moduli stack of PPAVs (X, L) is given by the
orbifold (i.e. smooth DM analytic stack) Ay =~ Spy,(Z)\Hy. Furthermore, the universal family
Xy, — Ay of PPAVs is uniformized by CY9 x H, and can be presented as a quotient, too:

Xy = (Z%9 % SPay(Z)) \ (C7 x Hy).

2.3. Degenerations of PPAVs. In the following sections, we discuss the monodromy of de-
generations of PPAVs, especially in relation to toroidal extensions of A,. See [15] for reference.

Let f: (X,L) — A* be a degeneration of PPAVs of dimension g over a polydisk A* with
coordinates u1, ..., ug, such that the discriminant locus is the union of the coordinate hyper-
planes V' (u;) = {u; = 0}, for i = 1,..., k. Fix a base point ¢ € (A*)* and let Vz :== Hy(X;,Z).
Suppose that the monodromy transformation T;: V; — Vy associated to the simple, oriented
loop 7; € m((A*)*,t) ~ ZF is unipotent—for instance, by a result of Clemens [19, Thm. 7.36],
this holds if the general fiber over V' (u;) has reduced normal crossings.

Choosing a symplectic basis (Vz, L) ~ (Z?9,-), we may view T; as acting on the reference
lattice Z29. Let N; = log(T;) = T; — I be its logarithm, where I denotes the identity matrix of
size 2g x 2¢g. Note that Nf =0 and N; o N; = N;j o N; commute. Let N = Zle riN;, 7; € N,
be any strictly positive linear combination. Then N is the monodromy of the restriction of f to
the cocharacter A — AF defined by u + (v, ..., u"). By [16, Thm. 3.3], all (rq,...,7%) € N¥
define the same increasing weight filtration

W_y == (im N)%*
W_i1:=ker N
Wo = Vz.

More generally, for any (r1,...,7) € (Z>0)¥, the filtration so defined depends only on the
polyhedral face of (R>()¥ containing N.
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The above weight filtration may also be described as follows:
sat
2) W_y = (zle im Ni) and  W_; = (" ker(N;).

Indeed, by the saturatedness of the above filtration, it suffices to prove this for rational, and,
in fact, for real coefficients. The inclusions im(> N;) C > im N; and [ ker(N;) C ker(D  N;)
are clear. To prove the converse, let (rq,...,7%) € (Rsg)¥ and note that im(3>_7;N;) and
ker(} 7 N;) do not depend on the choice of 7; > 0, see [16, Thm. 3.3]. The inclusions in
question thus follow from a limit argument where r; = 1 and r; — 0 for i # j, applied to
im(>_rN;) Cim(> ] N;) and ker(> N;) C ker(d> rN;).

Definition 2.5. Consider the standard Lagrangian subspace Zej ® --- @ Zey C (Z29,-). TIts
stabilizer is the parabolic group

Py = { (gl A€T> € SpQQ(Z)}

with A € GLy4(Z) and BAT = ABT. We define the unipotent subgroup of Pz to be

Uz = {(é ?) :Be Symgxg(Z)}

and the Levi quotient to be Pz/Uz ~ GLg(Z), which can also be lifted into Spy,(Z) as the block

diagonal matrices (i.e. matrices with B =0 in Py).

The collection of commuting unipotent matrices T; € Spy,(Z) can be simultaneously con-
jugated into the unipotent subgroup Uz as they fix a coisotropic space (given by W_;) and
hence fix a Lagrangian subspace. Thus, choosing a basis appropriately, we may assume that
the monodromies T; are all of the form

I B
o - 2)

for symmetric matrices B;.

Definition 2.6. Let f: (X, L) — A* be a degeneration of PPAVs with unipotent monodromies
about the coordinate hyperplanes. We define the monodromy bilinear forms B; € Sme(grgV V)V
for i =1,...,k by the formula

(4) Bi(z,y) = L(N;z,y).

Observe that B; depends only on the punctured family f*: (X*,L*) — (A*)* and so the
definition extends naturally to families of PPAVs over the punctured polydisk.

This provides a coordinate-free definition of the matrices B; from above. Implicit in the
above definition is the claim that N; contains W_1V7 in its kernel, which follows from (2).
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Definition 2.7. Choose a symplectic basis of V7 such that 7; has the form (3) for each ¢, which
(Z). The span

(R)

identifies each B; with a symmetric matrix B; € Sym,,,

IB%f = RZO{BL ceey Bk} C Symgxy

is the monodromy cone associated to the degeneration f: (X, L) — AF. This definition extends
to any family of g-dimensional PPAVs f*: (X*, L*) — (A*)¥ with unipotent monodromy.

Note that the collection (B;);=1,..; of monodromy matrices, and hence the monodromy cone
B, is unique, up to the simultaneous action of A € GL4(Z) by B; — AB;AT. This action
corresponds to the conjugation action T; — MT;M ! of P; C Spag (Z), M € Pz, which descends
to the Levi quotient P7/Uy ~ GL4(Z) because Uy is commutative.

The symplectic basis of V7 determines a lift of the classifying map ®: (A*)F — Ay to
a holomorphic period map o: HF — Hgy, where HF — (A*)F is the universal cover, H :=
{7 € C | Im(7) > 0}. Take coordinates (71, ..., ) € HF, with the universal covering map given
by u; = exp(2mi7;). This lifted map satisfies the equivariance property

5(71,...,Ti+1,...,7k) :ﬂ-&;(Tl,...,Tk) :&)(Tl,...,Tk)+Bi
corresponding to the deck transformation for the generator ; € mi((A*)F, ).
Definition 2.8. Define a holomorphic map to the flag variety DV := LGr(Vz ® C, L) by
: H™ — DV
T 5(7’) —(mB1+ -+ By)
and denote by ¥: (A*)F — DV its descent to (A*)F.

Note that ¥ descends because the —(m By + -+ + 7 By) term cancels the equivariance of P,
and so makes the map invariant under the action of Z*. We now recall Schmid’s multivariable
nilpotent orbit theorem [57, Thm. 4.12]|, applied to our setting:

Theorem 2.9. ¥ extends to a holomorphic map AF — DV. Let W(0) denote the extension to
the origin, and consider zﬁni]p(’T) =V(0)+ (nnB1+ -+ 7Br). Then

(1) &)nﬂp(T) € Hy C DY for all sufficiently large Im7; and

(2) the distance d(®(7), &)nilp(’r)) decays exponentially in Im ;.

Here distance is measured in the natural left Sp,,(R)-invariant metric on H,.

Definition 2.10. Let P, := {B € Sym,, ,(R) : B > 0} be the cone of positive-definite matrices
and let 73; be its rational closure, consisting of all positive semi-definite matrices whose kernel
is a rational subspace of RY.

There is a natural stratification

Pl =Pyuly, Pg—1 ULy, Py—2U---UPy
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where the V; C Z9 range over all primitive integral sublattices of Z9 of codimension %, and the
relevant copy of Py_; is the cone of positive-definite bilinear forms on R?/(V; ® R). See Figure
22 to visualize the projectivization of 73; , which is a cusped hyperbolic disk.

It follows from item (1) of Theorem 2.9 that:

Corollary 2.11. The monodromy cone B is contained in the rational closure 73;' of the
positive-definite g X g matrices, uniquely up to the action of GLy(Z).

We have that WfQ = W_1 where the perpendicular is taken with respect to L. Thus L
descends to a unimodular symplectic form on W_;/W_s. In fact, by [57, Thm. 6.16], we have
the following fundamental theorem on the existence of the limit MHS:

Theorem 2.12. The tuple (Vz, L, V(0),W,) defines a graded-polarized Z-mized Hodge struc-
ture, the limit mixed Hodge structure. In particular, the filtration of W_1/W_o ® C induced by
the Lagrangian subspace W(0) defines a pure, principally polarized Hodge structure of weight —1
on W_1/W_o ~ (Z*!,.). Here h is the rank of the null space of a general element of B.

Definition 2.13. We say that f: X — AF is mazimally degenerate if Br NP, # 0, ie. the
general element of B is positive-definite. Equivalently, W_o = W_4, i.e. h = 0.

Definition 2.14. We define the tropical moduli space of abelian varieties to be
(Ag)trop = GLg(Z)\P;
where the action is via B — ABAT.

We can view (Ag)irop as the tropical moduli space of abelian varieties, because, as we will see
in Section 2.5, a fan defining a toroidal extension of A, lives naturally in (Ag)rop. But more
deeply, (Ag)trop (or at least, the image of Py in it) is itself a moduli space of “tropical abelian
varieties” [42, 18, 14]: It parametrizes isometry classes of full rank lattices in RY, where the
action of GL4(Z) serves the role of forgetting the basis of the lattice in which the Gram matrix
of the corresponding real intersection form has been expanded.

Then B defines, canonically, an immersed polyhedral cone in (Ag)trop-

Example 2.15 (Degenerations of Jacobians). Let 7: C — AF be a family of nodal curves,
which is smooth over the complement of the coordinate hyperplanes V (uj - - - ug).

Let {pi;} denote the nodes of the general fiber over V (u;). The local equation of the smoothing
of the node p;; is given by x;;y;; = u:” for some positive integer r;;. It follows from the
Picard-Lefschetz formula that the logarithm of monodromy on Vz = Hy(Cy,Z) about the i-th
coordinate hyperplane is given by

(5) Niz @ =30 rii(@ - vij)vig

where v;; € H1(Cy,Z) is (either orientation of) the vanishing cycle of the node p;; and - is the
intersection form on V7. Observe that the total space C' is smooth if and only if all 7;; = 1 and
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no node of Cy is the specialization of a node over both V(u;) and V' (u;) for i # j. Taking the
relative Jacobian fibration

Jr®: JC° — (A*)F
of the smooth family, the monodromy is given by the same formula, since Hy(JCy,Z) ~
Hy(Cy,Z) for u € (A*)k. The weight filtration is
W_y = Z-span{~;;} and W_; = (W_g)*.

Computing the monodromy bilinear forms on grgv Vz we get

Bi(z,y) = Ni(z) -y = >, rij (- i) (Y - i)

Suppose now that 7: C — A* C Def(Cp) is a slice of the universal deformation of Cy which is
transversal to the equisingular/locally trivial deformations. Then there is only one node over
each V(u;), the corresponding integer r; = 1, and k is the number of nodes of Cy. Thus,

Bi(z,z) = (7i - 2)* € Sym*(grg Vz)"

is a rank 1 quadratic form, given by the square of the linear form which is pairing with the
vanishing cycle v; € gr%VZ.

We have canonical isomorphisms

gry Vz ~ H1(T'(Cy), Z),
g’y Vg ~ HY(T'(Cy), Z),

where I'(Cp) is the dual graph of the central fiber; indeed, by duality it suffices to prove the
first isomorphism, which follows e.g. from Proposition 5.12 below. The space W_sV7 = gr'%, V3
is generated by the vanishing cycles 7; which are in bijection with the edges of I'(Cy). The
relations between the vanishing cycles v; are given by the boundaries of the subsurfaces they
bound. In terms of graphs, these are the coboundaries of the vertices of I'(Cy), so that

g,V ~ coker(CO(T(Co), Z) 2 CHI(Co), Z)) = HYT(Cy), Z).

In turn, H1(['(Cy),Z) ~ gry Vz with the quadratic form B; = (v; - z)? evaluating on a I-cycle
Y cie; € Hi(T'(Cy),Z) to the square ¢? of the coefficient of the edge i in it. See Figure 1.

It follows from the Mayer—Vietoris sequence that gr'V;Vz ~ H;(C¥,Z) where C§ — Cy is the
normalization, with its natural polarized Z-Hodge structure.

Example 2.16 (Degenerations of intermediate Jacobians). This example is due to Gwena
[33]. Let Yy be the unique cubic threefold with 10 isolated A; singularities, the Segre cubic.
Concretely, it is defined by the equations

Yo = {Z?:o zi= Yo%) = 0} C P
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73

FIGURE 1. Nearby fiber C; to the universal deformation 7: C' — A3 of a nodal
genus 2 curve Cjy with three nodes. Vanishing cycles {71,72,73} € ngVZVZ shown
in red, and dual graph I'(Cp) of the central fiber, shown in blue.

with the 10 singularities given by the Sg-orbit of the point [1:1:1:—1:—1:—1] € P°. Then,
the universal deformation (whose existence follows from [29, Cor. 4.2], for example)

7: Y — Defy, ~ A0

of Yy is a degeneration of smooth cubic threefolds, whose discriminant locus is the union of
the 10 coordinate hyperplanes V (uq ---u19) C A'. Similar to the universal deformation of
a nodal curve, if we label the nodes of Yy and coordinate hyperplanes appropriately, then
V(u;) ~ A% € A0 is exactly the locus where the i-th node is not smoothed.

We now define the intermediate Jacobian fibration

IJr®: IJY° — (A%)'.

The rank 10, polarized, unimodular Z-local system Vz := (R37SZ(1))" underlies a variation of
Hodge structure of weight —1 and type (—1,0), (0,—1). It is polarized by the negation of the
intersection form on Hj(Y,,Z) for u € (A*)!9. Then, we define IJY*° := V¢ /(F° + Vyz).

Let p; € Y; be the unique node on the general fiber of Y; — V' (u;). Then associated to p; is
the cycle of a vanishing 3-sphere 7; € Vz = H3(Y;,Z(—1)). With an appropriate labeling and
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orientations, the 10 cycles ~; satisfy the following collection of linear relations
Y6 ="V — V1t V2
V=71 72+ 73
(6) T8 =Y2 3+ M
Yo=Y3 Va4tV
Y10 = Y4 — V5 + 71,

see [33, Sec. 7.1.10], and generate a primitive integral Lagrangian subspace W_o C H3(Y;,Z(—1))
of rank 5. The Dehn twist about the three-sphere ~; gives the formula

Ni:x— —(z-v)v

for the logarithm of monodromy about the i-th coordinate axis. By the same computation as
Example 2.15, the monodromy bilinear forms on grf/ Vz satisfy B;(z,z) = (7 - 2)?. As we
will see in Remark 4.8 in Section 4.1, there is no graph G for which the 7; correspond to the
edges of G and such that the relations (6) between the ; are given by the image of the map
C°I(G),Z) — CYI'(G),Z) defined by some choice of orientation, cf. Example 2.15.

We will give explicit extensions of the families J7° and IJ7° over A* and A in Examples
4.13, 4.14 and in Construction 4.16.

2.4. Toric varieties. We recall here some of the basic theory of toric varieties. We refer to
[30, 21] for the standard notions.

Toric geometry will be used both to extend A, toroidally (Section 2.5), and to build Mumford
degenerations (Section 3). We employ the standard toric notations of N ~ Z9 for a free abelian
group of rank g and M := Hom(N, Z), for constructions concerning the abelian and degenerate
abelian fibers. These lattices play, respectively, the roles of the cocharacter and the character
lattices in toric geometry. Thus, fans lie in N while polytopes lie in M.

Definition 2.17. A fan § in N is a set of strongly convex, rational polyhedral cones 7 C Ny
for which every face of a cone is a cone, and the intersection of two cones is a face of each.

We do not impose the hypothesis that fans have finitely many cones, and indeed almost none
of the fans in this paper satisfy this hypothesis. For each cone 7 € § in a fan, we may consider
the C-algebra C[r" N M] associated to the commutative semi-group 7 N M, where 7 C Mg
is the collection of all linear functionals evaluating non-negatively on 7 C Ng. We form the
corresponding affine toric variety

(7) Y (1) = Spec C[r" N M].

Then the gluing Y'(§) = U, 5 Y (7) of these affine schemes along the natural open immersions
corresponding face inclusions gives the toric variety Y (§), see [30, Sec. 1.4].
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Notation 2.18. If § is a polyhedral fan, we notate its toric variety by Y (§).

For all constructions in this paper, Y (§) will be an analytic space (and even a C-scheme)
which is locally of finite type.
As in the usual theory of toric varieties, the torus orbits of dimension d in Y (§), isomorphic

necessarily to (C*)¢, correspond bijectively to cones of codimension d in §, see [30, Sec. 3.1].

Definition 2.19. A polytope H is a convex set in My defined by the intersection of a (possibly
infinite) number of closed rational half-spaces, such that H is locally of finite type, i.e. locally
about every point p € H, it is defined by a finite number of half-spaces.

Definition 2.20. A face F C H of a polytope is a non-empty intersection of H with a (pos-
sibly empty) collection of supporting hyperplanes, and the local monoid M of this face is the
intersection of the lattice M with the finitely many (possibly empty) closed half-spaces which
define H in the neighborhood of a general point of F', translated to the origin.

The normal fan of H is the fan formed from the dual cones of the local monoids Mg ranging
over all faces F' C H (including the open face H).

The toric variety Y = Yy associated to the polytope H is the union of Spec C[Mp] ranging
over all faces, see also [30, Sec. 1.5]. If, furthermore, all faces of H are integral polytopes, then
there is a canonically defined torus-equivariant holomorphic line bundle £ on Y, given by gluing
together line bundles on each affine chart Spec C[Mp], in a manner which locally agrees with
the recipe in [30, Sec. 3].

Remark 2.21. When the polytope H is compact, we may construct ¥ = Yy directly as the
projective variety Yy = ProjC[Cone(H) N (M x Z)|, where Cone(H ) is the cone over H, put
at height 1 in Mg x {1} C Mg x R; the above line bundle is £ = Oy (1). The lattice points
m € H N'M define a basis of torus-equivariant sections of H°(Y, O(1)). More generally, lattice
points (m,w) € Cone(H) N (M x {w}) of height w correspond to torus-equivariant sections
Om/w € H(Y,O(w)). The multiplication map

HO(Y,O(wy)) @ H(Y, O(wy)) — H°(Y, O(wy + wy))

corresponds to ((m,w1), (m’, ws)) — (m + m’, w; + ws), which we may equivalently write as a
multiplication rule Oy, /i, * Om/ jws = Omtm’) /(w1 +ws)» cf- (19) below.

Suppose now that there is a subgroup A C GL(M) x M of the integral-affine group (possibly
infinite), acting on the polytope H. Then there is a natural action of A on Y, which in a basis
M ~ 79 acts on the open torus orbit N @ C* ~ (C*)9 by the map

Ajg

ail
...cg

Ci — ¢

where (aij)i1<ij<g € GLg(Z) is the linear part of A in the chosen basis. Moreover, there is
a linearization of £ = Oy (1) with respect to the A-action on Y, which acts on sections by
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a-(2™) = z*™. The A-action is properly discontinuous on a tubular neighborhood of all toric
strata corresponding to faces F', or cones 7 € §, whose A-stabilizer has finite order.

Definition 2.22. A fan § is regular if every cone 7 € § is standard affine; that is, the primitive
integral generators of the extremal rays of 7 form a subset of a basis of N.

Equivalently, if § is a normal fan, the polytope H should be Delzant. The toric variety
Yy =Y (F) is a smooth analytic space if and only if § is regular, in which case for each 7 € §,
the affine toric variety Y (1), see (7), is isomorphic to a product of an affine space with a torus.

Definition 2.23. The support (in Ng) of a fan § is the union of all cones 7 € §.

Finally, a morphism of fans § — & is a linear map between the corresponding cocharacter
lattices, which sends cones into cones. It induces a torus-equivariant map Y (§) — Y (&).

2.5. Toroidal extensions. We now outline the construction of toroidal extensions of A, as-
sociated to a monodromy cone By and more generally a fan §. See [51, 9, 45, 17] for references

on toroidal compactifications of Siegel spaces.

Definition 2.24. A fan § for A, is a rational polyhedral decomposition whose support is
contained in 73; , for which § is GL,(Z)-invariant under the action B — ABAT, with finitely
many orbits of cones.

Example 2.25. Let f: X — AF be an abelian fibration with unipotent monodromies about
the coordinate hyperplanes. Then §; := GL4(Z) - By defines a fan, when B; injects into

Let B be a polyhedral cone which embeds into (Ag)¢rop. In what follows, we will consider the
fan § = GL4(Z) - B. Consider the coordinate-wise exponential mapping:

E:Sym,,,(C) = Sym,,,(C*)

(Uij)zg,jzl — (exp(2wiaij))£j:1.

gxg gxg

The map F' is the quotient by the action of translation by Uz ~ Sym,, g(Z), so E defines an
open embedding of the quotient of Siegel space (Def. 2.3) into a torus

E: Uz\Hy — Uz\Sym,, ,(C) ~ Sym,, ,(C*) ~ Sym,, ,(Z) ® C* ~ Uz ® C*.
Here Uz C Pz is the unipotent radical of the parabolic, as in Definition 2.5, and the isomorphism
Symg, ,(Z) ® C* ~ Sym,, ,(C*) is given by (n4;)1<ij<g ® A = (\")1<;i j<g. This is called the
first or unipotent partial quotient of H, in the theory of toroidal compactifications.
Compose the period maps ® and $nilp of any degeneration with B; = B with the quotient map
Hy — Symy, ,(Z)\H,y. They descend to single-valued maps @, @y : (AF — Symy, ,(Z)\Hy.
Composing @y, with the map F gives rise to a map

(8) (A*)F = Symg, (Z) ® C* = Symg,,(C*)
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whose image is (an analytic open subset of) a translate of the subtorus (B) ® C* where (B) =
(RB) N Sym,, ,(Z). Thus, Theorem 2.9 can be rephrased as saying that the period mapping is
approximated by a translate of a subtorus, near 0 € A*.

Since the fan § = GL4(Z) - B sits in the co-character lattice Sym,  (Z), the associated toric
gxg(C"). Consider the quotient GLy(Z)\Y (). This
quotient is not globally well-behaved, e.g. the action of GL,(Z) fixes the origin point of the open
torus orbit. But there is a tubular analytic neighborhood T'(§) C Y (§) of the union of the toric
boundary strata of Y (§) corresponding to cones intersecting P, on which the GL4(Z)-action is
properly discontinuous. Let T%(§) be the intersection of T'(F) with the open torus orbit Uz & C*.
Then, we have open embeddings

variety Y () is a toroidal extension of Sym

(9) GLy(Z)\T(§) < GLy(Z)\T*(§) — Pz\H,.

By [11, Thm. 4.9(iv)], the boundary of Sp,,(Z)\H, is locally modeled near the Baily-Borel cusp
(associated to the Lagrangian subspace Ze; @ - - - @ Zey) by Pz\H,4. Thus, by (9), we may glue
GLy(Z)\T' () to Ay = Spe,(Z)\H,4 along their common analytic open subset GLg(Z)\T™ ().

More generally, the same construction applies to any GL4(Z)-invariant fan §, and the result-
ing toroidal extension is relatively proper over the 0-dimensional cusp of the Baily-Borel [11]
compactification ngB =AgUA; 1 - 1A U A if and only if Supp(§) = P,

When § contains cones supported in 73;' \ Py, the gluing defined by (9) further extends along
the intermediate-dimensional strata of the Baily-Borel compactification. This is the toroidal

extension Ay — Ag of the orbifold A,.

When Supp(§) = P, , we notate the toroidal extension by A, — jg;
call it a toroidal compactification. It follows from [9, Thm. 5.2] that .Ag or jg is a DM algebraic
stack, in the former case by refining and extending § to a fan with full support 73;' .

it is proper, and we

Notation 2.26. For simplicity, we will write A4, — A]g to notate the toroidal extension asso-
ciated to the fan § = GLy(Z) - B consisting of the orbit of a polyhedral cone B C P,

Proposition 2.27. For any degeneration of PPAVs f*: X* — (A*)F with monodromy cone B,
the period map (A*)*F — Ay admits a unique holomorphic extension Ak — AE.

Proof. The proposition follows from Theorem 2.9: We have shown that the nilpotent orbit
@51, maps, analytically-locally near the boundary of Ay, into the translate of the subtorus
(B) ® C* C Symyg,,(C*), see (8). Any cocharacter B® (C\ 0) C (B) ® C*, for B € B, admits
o
stratum corresponding to the cone of § containing B in its relative interior. We deduce that
Dip : (A — Ay extends holomorphically to a map AF — AE.

Next, it follows from the exponential convergence (2) of ® towards Py, (in the invariant
metric on H,) that ®: (A*)F — A, admits a continuous extension A* — AE. Since A* is

a completion over 0 € C to the toroidal extension A, sending 0 into the toroidal boundary
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normal, Riemann’s removable singularities theorem implies that this continuous extension is

holomorphic. It is unique because the toroidal extension is a separated analytic stack. ]

Remark 2.28. In general, one may wish to consider monodromy cones B; for which the B
does not embed into (Ag)irop (Def. 2.14). The issue here is that the GLy(Z)-orbit of such a
cone may intersect itself. This problem is resolved by rather quotienting Uz\H, C Uz @ C* by
a finite index subgroup I' C GL4(Z).

For instance, consider the n-torsion subgroup X [n] ~ (Z/nZ)?9 of a PPAV X. The principal
polarization defines a natural non-degenerate symplectic pairing on X [n]. We define the moduli
space of abelian varieties X with full Lagrangian level n structure by adding the data of:

(1) a Lagrangian subspace Z ~ (Z/nZ)% C X[n] and
(2) a Z/nZ-basis of =.

All degenerations we consider in this paper admit some full Lagrangian level n structure,
because there is a distinguished Lagrangian subspace gr'%, H1(X,Z) on which the monodromy
acts trivially. The moduli stack Ag4[n] of abelian varieties with full Lagrangian level n structure
is an étale cover A, = Agln] — A,.

At an appropriate 0-cusp of the Baily—Borel compactification of /Tg (the cusp corresponding
to a Lagrangian subspace £ C Hy(X,Z) for which %é/é = E), the parabolic stabilizer Pz, has
the following structure:

0—Uz— P;—T(n)—0,
where the unipotent subgroup Uz =~ Symg, ,(Z) is the same as without level structure, but the
Levi quotient I'(n) := ker(GLgy(Z) — GL¢(Z/nZ)) is the full level n subgroup.

Then, a toroidal extension of .Zg at this Baily—Borel cusp has the “advantage” that a fan need
only be I'(n)-invariant. Furthermore, the fundamental domain for the action of I'(n) is larger
than the fundamental domain for that action of GLy(Z). In particular, given any polyhedral
cone B C 77; , there exists some n (depending on B) for which B embeds into the quotient
['(n)\P,. The preceding results also apply at this cusp, since I'(n) - B now defines a fan.

Proposition 2.29. Let 7 C RF be a strictly convez, rational polyhedral cone, and consider any
homomorphism ¢: ZF — Symy, ,(Z) for which B := ¢g(7) C P, . There exists a quasiprojective
variety Y, divisor D C'Y, point 0 € D, and projective family f*: X* - Y*, Y* =Y \ D, of
PPAVs of dimension g, in the algebraic category, whose monodromy cone at 0 is given by ¢ in
the following sense:

(1) Y admits, near 0 € Y, an étale-local isomorphism to the toric variety Y (1), sending D
to the toric boundary, and 0 to the torus fized point.
(2) the monodromy representation of Y \ D near 0 is given, under this isomorphism, by

T (ZF @ C*, ) ~ ZF 2 Symy ,(Z) = Uz C Spyy(Z).
Here 7ZF @ C* C Y (1) is the open torus orbit.
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Observe that it follows from (1) that Y* is smooth near 0.

Proof. We first prove the proposition under the hypothesis that ¢ is injective.

Consider the étale cover Ay[n] — Ay given by full Lagrangian level n > 3 structure as in
Remark 2.28. As noted, there is a Baily-Borel cusp of Ag4[n] whose parabolic stabilizer Py has
unipotent subgroup Uz C Sym,,,(Z) which is the same as for A, but whose Levi quotient is
Pz /Uy = I'(n) C GLg4(Z). Since I'(n) is neat for n > 3, its action on the toroidal extension
Ay[n]¥ is free in the tubular neighborhood T'(§) of (9). We deduce that there is a Zariski
open V C Ay [n]¥, containing all maximally degenerate strata, over which the universal family
Xglv+ — V* of PPAVs, V* :=V N Agy[n], exists as a scheme (rather than just a DM stack).

Then, choose n > 3 so that B lies in the strict interior of a fundamental domain for the action
of I'(n) on P, and define § = I'(n) - B. By the construction of toroidal extensions, the open set
V' is étale-locally isomorphic to the toric variety YSymng(R) (B).

Choose a finite index sublattice A C Symg, ,(Z) for which A NB = im(¢). Then the finite
étale cover A@C* — Symy, ,(Z)®C* of algebraic tori induces a branched cover of toric varieties
Yaer(T) — Yoym, ., (R) (B). Take an algebraic branched cover V' — V with the same branching
over the toric boundary, under the étale-local identification of Ay[n]S with Ysym, ., (R) (B). Then,
V' is étale-locally isomorphic to YaAgr(7), over the deepest toroidal stratum.

Finally, to construct Y, we slice V' by (g’gl) — dim 7 generic hyperplanes, which under the
étale-local identification of V' with Yagr(7) are transversal to the deepest toroidal boundary
stratum. We set Y* to be the inverse image of V*, D =Y \ Y* and 0 € D as an intersection
point of the hyperplanes with the deepest stratum. We set the family of abelian varieties
f*: X* = Y™ to be the pullback of the universal family Xj|y~ — V* (which exists by the above
discussion) along the map Y* — V*.

To verify that the monodromy representation of f* is as specified, consider a 1-parameter
family A* — Y™ which extends to a map A — Y sending 0 — 0. The monodromy over A*
can be computed in the étale-local model as the monodromy of the family of PPAVs over a
co-character. Such co-characters correspond to lattice points, in 7 N ZF. Since f*: X* — Y*
is pulled back from V*, the monodromy representation is pulled back along the morphism
of cocharacter lattices, given by the inclusion A < Sym,  (Z) which, in particular, restricts
¢: 7F — Symyg,,(Z). Finally, it suffices to observe that the monodromy over the cocharacter
B ®C* C Symg, ,(Z) ® C* is canonically identified with B € P N Symg, ,(Z), see e.g. (11).

Finally, we address the case where ¢ is not injective. Define 7 := ¢r(7) C P, , viewed
as a polyhedral cone in the lattice ¢(Z*). We have a descended, injective homomorphism
& H(ZF) — Symy, ,(Z) satisfying the hypotheses of the proposition. Thus, there is a family
?*: X" 5 Y overabase Y =Y \' D, a point 0 € D, and an étale-local isomorphism
a:Y — Y (7) near 0 satisfying the conclusion of the proposition. Then the base change of the
morphism avo f : X — Y (7) along the morphism of toric varieties Y (7) — Y (7) produces the
desired family f*: X* 5 Y*:=Y" Xy Y(T) C Y Xy Y(7) =Y. Here we take 0 € Y to
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be the fiber product of the points 0 € Y and the torus fixed point of Y (7). Since the desired
monodromy map factors through ¢, the condition on monodromy follows. ]

Corollary 2.30. Let B; € 73; NSymg, ,(Z) fori=1,... k. There is a smooth quasiprojective
variety Y, an snc divisor D C Y, a zero-stratum O € D, and a projective algebraic family
f*r X* = Y* of PPAVs, such that the local monodromy bilinear form (Def. 2.6) about the
component D; 20 is B; foralli=1,...,k.

Note that B; need not be primitive.

Proof. The corollary follows from Proposition 2.29, by taking 7 := R’;O C R*, and the homo-
morphism ¢: ZF — Symy, ,(Z) sending e; — B;. Here one can assume that Y is smooth and D
is snc because they are étale-locally isomorphic to Y (7) = C* and the union of the coordinate
hyperplanes, respectively. O

Remark 2.31. Given any two families X7, X; of PPAVs over (A*)* with the same integral
monodromies about each coordinate axis, there is an analytic deformation X* — (A*)* x Z of
such families, over a connected base Z, and points 1,2 € Z for which X" ~ X' for ¢ = 1, 2.
Indeed, we may first deform each X} to the nilpotent orbit (8) passing through the same point
and then relate the two translates of subtori (B) ® C*

of the deepest toroidal stratum of .A;B )
(C*).

by a translation in Sym,,

3. THE MUMFORD CONSTRUCTION

In Section 2.5, we have shown how to extend A4, — A;B (or jg — ;@B) toroidally, so that
the period map (A*)¥ — A, of any degeneration f: X — AF with monodromy cone By =B
admits an extension of the period map over the punctures A* — .Ag. We will now describe
how to extend the universal family of PPAVs over A, so that we may pull back this extension,
to produce particularly nice birational models of degenerations. It is useful to have examples
in mind; many are provided in Section 3.5. All degenerations we consider in this section are
maximal, in the sense of Definition 2.13.

3.1. Mumford construction, fan version. Let B € Sym?MY be a positive-definite, sym-
metric, integral, bilinear form on a lattice M ~ Z9. Then B defines a homomorphism

N:M - MY =N,

m+— B(m, —).

Define Ap C N to be im(V). In terms of symmetric g X g matrices, Ap is the span of the
rows (or columns) of B, and so defines a finite index sublattice of N ~ 7Z9.

Definition 3.1. Xiop(B) = Ng/Ap is the tropical abelian variety associated to B.
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Definition 3.2. A (resp. Q-)tiling of Xirop(B) = Ngr/Ap is a decomposition into convex poly-
topes with integer (resp. rational) vertices, or equivalently, a Apg-periodic (resp. Q-)polytopal
tesselation of Ng. A complete triangulation of Xirop(B) is a tiling, all of whose polytopes are
lattice simplices of minimal volume (1/g!).

Construction 3.3 (1-parameter case). Let B € Sym?M" be positive-definite and let 7 be a
Q-tiling of Xirop(B). We define the 1-parameter Mumford degeneration associated to 7.

Embed N ~ Ny x {1} < Nr x R as an affine hyperplane at height 1 in a space of one
dimension higher. Then, the cone over the tiling Cone(7") defines a rational polyhedral fan in
Ng x R ~ R9F!, See Figure 8 for an example of a tiling 7 of R?/A g, where

B:(j ;).

Let Y (Cone(T)) denote the corresponding infinite type toric variety. The action of Ap by
translations on 7 lifts to a linear action Ap < GLg41(Z) on Ng xR acting on the fan Cone(7),
and hence induces an action of Ag on Y (Cone(7)) by automorphisms.

Observe that the height function Ng x R — R, given by projecting to the final coordinate,
defines a morphism of fans Cone(7) — R>¢ to the fan of C (which is simply the positive ray in
R). Hence, there is an induced map of toric varieties

Y (Cone(T)) — Y(R>o) = C.

Since the action of Ap preserves the height function, this morphism descends to the quotient
Ap\Y (Cone(T)) — C, though this full quotient is poorly behaved. Let u be the monomial
coordinate about 0 € C. By standard toric geometry, we have:
(1) The fiber of Y(Cone(T)) — C over u € C* = C\ {0} is N ® C* ~ (C*)9, and the fiber
over u = 0 € C (i.e. the toric boundary) is an infinite quilt of complete toric varieties,
whose dual complex is the original tiling 7.

(2) Ap acts on the dual complex 7 of the toric boundary by translation, and acts on the
fiber over u € C* by translations by the rank g subgroup u? := Ap ® u ¢ N® C* which
in coordinates is the subgroup

((uB“,...,uBlg), ol (uBgl,...,ung)> C (C)9, B=(Byj) € Symyg, ,(Z).

B ¢ N ® C* is a discrete subgroup for all u € A*.

Hence the action of M ~ Ap is properly discontinuous over the unit disk A, because the action

Then, since B is positive-definite, u

is clearly properly discontinuous over u = 0 since M acts freely on the tiles of 7. Setting
X (Cone(T)) = Ag\Y (Cone(T))“€2, we get a proper, complex-analytic degeneration

f: X(Cone(T)) — A

of complex tori, called the standard 1-parameter Mumford degeneration associated to the Q-
tiling 7 of Xtrop(B) = NR/AB.
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The general fiber is principally polarized, by a symplectic form L defined as follows: Let
u € A*. Then, noting that we have a canonical isomorphism H;(IN @ C*,Z) ~ N, we have a
canonical exact sequence

(10) 0—N—= H(X,,Z) 5> M—0
induced by the long exact sequence of homotopy groups associated to the fibration
uP > N@C" - N@C/uP = X,.

Here we use that we have canonical isomorphisms u? ~ Ap ~ M. Then, we may define a
unimodular symplectic form on H;(X,,Z) by choosing a splitting of ¢ and then using the
canonical pairing between M and N. The splitting of ¢ we choose is specified by a choice of

logarithm 27iT = logu. Such a choice gives a presentation
Xy =N¢/(Ne&TNM)) ~CI/(Z9 © TB(Z9));

the resulting symplectic form L is then independent of the choice of logarithm 7 because the
transformation 7 — 741 defines a symplectomorphism of Hy(X,,Z). Concretely, the symplectic
form L is given as L((n,m), (n’,m’)) = m’(n) — m(n’), for (n,m), (n’,m’) € M @ N.

More generally, given a symmetric g x g matrix a = (a;;) € Sym,,,(C*), we may perform

gxg
the same construction, but instead quotient by the subgroup

Bi1 Bg1
) )

o agguPe)).

We must take |u| small enough that —Blog |u| —log|a;;| > 0. Then this construction may be

au® = {(a11u .. ,alguBlg), o (agiu

performed relatively, choosing a in some subtorus of Sym,, ,(C*) forming coset representatives

gxg
for the natural action of u € C*. We get an analytic degeneration

founiv . XgniV(COHC(T)) N Auniv

where A"™Y — Sym_, (C*)/C* is a holomorphic disk bundle over Sym,, ,(C*)/C*, such that
MV restricts to a family of PPAVs over the punctured disc bundle (A*)"™Y C A",

In terms of the toroidal extensions of Section 2.5, A" maps to the toroidal extension .Ag

whose fan is (the orbit of) a single ray § = GL4(Z)-R>¢B. So every 1-parameter degeneration of

PPAVs with monodromy B admits an extension pulled back from f'™V along an arc transverse

to the boundary divisor {0} x Sym,, ,(C*)/C* = AUV (AF)univ L)

Remark 3.4. Allowing the tiling 7 to have strictly rational vertices corresponds to allowing
the components of the central fiber to have non-reduced components. More precisely, the
irreducible components V; € Xo(Cone(T)) := f~1(0) are in bijection with the O-cells v; € T,
and the multiplicity d; of V; is the smallest positive integer for which d;v; € N.

Remark 3.5. When T has integral vertices, the total space X (Cone(T)) or X2V (Cone(T)) of
the Mumford degeneration is smooth if and only if 7 is a complete triangulation, i.e. 7 is a tiling
by standard lattice simplices. This condition ensures that Cone(7) is a regular fan—its cones
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are all standard affine cones. Then X (Cone(7)) — A is a semistable, K-trivial degeneration
(with smooth total space), see Proposition 3.14 below. These are sometimes called Kulikov
models, in analogy to K3 degenerations.

Remark 3.6. By passing to an intermediate cover H, — jg — Ay as in Remark 2.28, we may
assume that the Levi quotient I' C GL4(Z) of the parabolic stabilizer at some Baily-Borel 0-cusp

of .Zg acts freely on P;. Then, when B is primitive, the boundary divisor of A/éR =08 i isomorphic

to the discriminant divisor of fi™V, rather than a further finite quotient of it. In this case, the
base of f3" glues onto A, and thus, we may extend 3V to a family fUV: X'"V(Cone(T)) —

.Z;R 208 extending the universal family over .Zg. A priori, this extension exists only in the

category of analytic spaces. But it is always an algebraic space (Prop. 6.12), and for certain
choices of tiling 7, we may ensure it is relatively projective, see Section 3.3.
When B is not primitive, the base A™V of iV rather maps to A;R 208 by a map ramified

over the toroidal boundary divisor, to order the imprimitivity of B.

Proposition 3.7. The standard 1-parameter Mumford degeneration f: X (Cone(T)) — A cor-
responding to a tiling T of Nr/Ap has monodromy invariant B. The period map on the uni-
versal cover of A* is the nilpotent orbit through the origin: The maps

(AI;a &)nilp: H — Symng(Z)\Hg

2miT

satisfy 5(7‘) = E)nﬂp(r) = 7B, where u = ¢ s the coordinate on A*. More generally, the

period map on the restriction of f™V to the universal cover of (A*)‘mi"\{a} fora € Sym,, ,(C*),
is given by ®(1) = @i (7) = 5= (log a;;) + 7B.

= 2m

gxg

Proof. On the one hand, the coordinatewise exponential F(7B) is given by

Bi11 Big

exp(2miBi1T) -+ exp(2miBigT) u u
(11) -

exp(2miBgiT) -+ exp(2miBgyT) u

On the other hand, the fiber of the universal family X; — A4 over the period matrix o € H, is
simply the complex torus CY/(Z9®Z90) ~ (C*)9/(rows of E(o)) so the proposition follows. [

Construction 3.8 (k-parameter case). We now extend Construction 3.3 to the multivari-
able setting. Consider a collection of positive semi-definite bilinear forms B; € Sym?MY for
i =1,...,k for which E?:l B; is positive-definite. These bilinear forms define a collection of
symmetric homomorphisms N;: M — N.

We consider the quotient of N ® C* ~ (C*)9 by the subgroup

B B ._ <(U(Bl)11 i ) )

(Br)11

ul “ e uk 1 .. uk
(Bl)gl (Bk)gl

(ul DY uk

u](ch)lg), ..

o ,ugBl le,
o 7ugBl)gg ... u](CBk)gg» ~ 79,

) *

)
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If |u| < 1 for all 4, the resulting action of u - - -ufk on (C*)Y is properly discontinuous. Thus,

the quotient is a fibration
(12) fr X*(By,...,By) — (A%)F

of PPAVs, over a punctured polydisk, where the base has coordinates u;.

To define an extension over A* we require a fan S inside of Ng x RF ~ R9¥ which is
M-periodic for an action respecting the projection to R¥. More precisely, declare m € M to
act linearly on Ng x R¥ by

(13) (n, 7) = (n+ (7~ N)(m), 7) € Ng x R,

where 7 N := riN1+---+7rNp and N;: M — N are the symmetric homomorphisms associated
to B; € Sym?MY as above.

The fan S must then be M-periodic (with respect to the action (13)) and the projection
to R* must induce a morphism of fans to (R>q)¥, such that Supp(S) contains RY x (1,...,1).
Furthermore, we usually require that the morphism S — (R>0)* is flat, that is, the image of
any cone of S is a cone of (Rxq)F.

Then the multivariable Mumford construction is the result of quotienting by M the inverse
image Y(S)“EAk of AF in the infinite type toric variety Y (S). We call this quotient

(14) f: X(S) — Ak

It is a proper, analytic, flat extension of f*: X*(By,..., By) — (A*)*, with flatness guaranteed
by the flatness of the fan map. As in Construction 3.3, the fibration M = u?l . -'ukB’“ —
N ® C* — X, = f~!(u) defines an exact sequence

(15) 0N H (X, Z) ZM—=0, u=(up,...,u) € (AMF,

and by choosing a section of ¢ by taking logarithms of u;, the canonical pairing between M and
N induces a well-defined principal polarization on X,,.

Over the co-character A — AF defined by u + (u™, ..., u"*), the construction specializes to
the 1-variable Mumford Construction 3.3 associated to B = r1 By + - - - + r; By, and the relevant
fan is the restriction of S to the inverse image of R>o7 C (R>0)*; here S|g. i ~ Cone(T) for a
tiling 7 depending on 7. In particular, by Proposition 3.7, the monodromy_cone (see Definition
2.7) of the degeneration f*: X*(By,..., By) — (A*)¥ is given by B := R>o{ B, ..., By}

More generally, we may, as in Construction 3.3, perform the multivariable construction
relatively over the torus (Sym,, (Z)/(B)) ® C* by twisting the M-action by some elements
a = (aij) € Symg,,(C*). Here, we have quotiented by (B) ® C*, so as to reduce redundant
moduli of the general fiber as much as possible. We denote the resulting fibration by

fcl)miv . Xglniv (S) N (Ak)univ

where (AF)wiv (Symyy,(Z)/(B)) ® C* is a polydisk bundle. Note that fMV: X!V(S) —
(AF)Y is a locally trivial deformation of f: X (S) — AF. Indeed, as analytic germs about the
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zero section of (AF)™V the universal cover of the former is the product of the universal cover
of the latter with the torus of twists (Symg,,(Z)/(B)) @ C*. &

Remark 3.9. In terms of fans, the (possibly rational) origin section of X (S) — A* is declared
to be the image of the subtorus whose cocharacter lattice is {0} x ZF ¢ N x Z*.

Remark 3.10. Let Bi,..., By € Symg,,(Z) and let f*: X*(Bi,...,By) — (A*)F be the
family of g-dimensional PPAVs defined in (12), with fiber X;, ¢ € (A*)*. Then, as we have
seen above, the monodromy bilinear form about {u; = 0} (Def. 2.6) equals B; for a suitable
symplectic basis of H(Xy,Z), cf. Corollary 2.30.

Construction 3.11 (multiparameter case, cone of a fan for Ay). Suppose that the cone
B = REO{BM Rk ,Bk} C P;

is not standard affine, or not even simplicial. Recall from Remark 2.28 that for some étale
cover .Zg — Ay, we have a toroidal extension ,Z(g — .Zé@ whose monodromy cone is B. For an
appropriate choice of fan &, Construction 3.8 gives a degeneration of abelian varieties over a
k-dimensional polydisk X (S) — A* C Y(RY,). In fact, we may descend the construction to an
analytic open neighborhood of the torus fixed point in the affine toric variety Yrg(B), by taking
a fan S supported rather in the vector space Nr x RB, and periodic with respect to the same
action (13). Here, the subscript RB of Yrp refers to the fact that we take the toric variety of
R).

the polyhedral cone B C RB, sitting inside the vector space RB, rather than inside Sym,, g(

Taking the universal twist, we produce a degeneration
XV(S) - T(B) C Y(B)

where now Y'(B) is the toric variety of the polyhedral cone B C Sym,,,(R) and T'(B) is an
analytic tubular neighborhood of the deepest toric boundary stratum. Then, following Section
2.5, we may analytically glue T'(B) along the complement 7™ (B) of the toric boundary to ./Zg.
Taking the gluing to respect the zero sections, we produce a degeneration

X_lil_niv(S) — ./Z(g UT*(IB) T(B) = ./Nt;_ C A;I]BS

which analytically extends the universal family fg — ﬂg.

A more detailed construction of X"V(S) would take us too far afield, but one may unify
the set-up of toroidal extensions of 4, laid out in Section 2.5, with the toroidal construction
of X (&), by forming a fan SV in the larger space 73; ® RY C Symg,  (R) © RY admitting
a morphism of fans S"™V — B via projection to the first factor. Namikawa was the first to
introduce such “mixed cone decompositions”, see [49, Sec. 3] and [51, Sec. 9] (though in these
texts, the focus is one particular Mumford construction, similar to Construction 6.5).

The family XJ“rniV(S) further extends to a proper, flat family

(16) funiv: Xuniv(S) N .AV;B
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surjecting onto the base /T;B. Indeed, this follows from [17, Ch. VI.1]. The idea is as follows.
By taking T'(B) C Y (B) as the maximal analytic open neighborhood of the toric boundary over
which the action of M on the inverse image of T'(B) in Y (S™V") is properly discontinuous, the
base T'(B) surjects onto the toroidal extension .Z;B. Then, the family descends from a partial
uniformization of the Baily-Borel strata of intermediate dimension, to yield (16).

Most degenerations appearing in this paper are special cases of the current construction,
which are, in turn, special cases of toroidal extensions of the universal family of abelian varieties,
as discussed in Faltings—Chai |17, Ch. VL.1|. The fan S is an instance of a “GL(X) x X°-
admissible polyhedral cone decomposition” (for s = 1) in the terminology of loc.cit. up to the
following two minor modifications: We do not demand as in [17, Ch. VI, Def.1.3.(iii)] that
S defines a complete fan (i.e. a compactification of X,;) and when working on an étale cover
;lg — Ay we only demand admissibility for a finite index subgroup. The constructions used to
prove [17, Ch. VL.1, Thm. 1.13| generalize to this setting, to yield an extension .fg@ — .Zg of
the universal family, for any morphism & — § from a mixed cone decomposition (for /'?g) to a
cone decomposition (for ./Zg). The above family (16) is a special case.

A condition which is crucial for our applications in [27] is to achieve both a smooth total
space and equidimensionality (i.e. flatness) over Z;B. As mentioned in |17, Ch. VI, Def. 1.3.(v),
Rem. 1.4], achieving both of these properties is a hard combinatorial problem, one closely related
to the main result of [2]; in general, it is only possible after modifying the base ;lf .

As additional historical notes, the first example of a complete fan for X (equidimensional
but not regular) was provided by Namikawa, see e.g. [49, Sec. 13, Prop. 13.5, Thm. 13.6]. The
generalization of Faltings—Chai to the more general setting of mixed Shimura varieties is Pink’s
dissertation, see especially [54, Ex. 2.25, Ch. 6, Ch. 10| for discussion relevant to Xj. &

As an example of the above construction, the Tate curve extends the family of elliptic curves
C* Ju” over the unit disk A, = {u € C : |u| < 1}, see Example 3.31. The maximally extended
base, on which u? acts properly discontinuously, is A, D A* ~ Z\H. The family over A*
descends (as an orbifold) along the infinite degree surjection Z\H — SL2(Z)\H, to extend the
universal family over the orbifold A; = SLy(Z)\H. Only the punctured disc A, (e~27)* of the
smaller analytic disk A,(e™27) = {u € C : |u| < e7?"} C A, embeds, on the level of coarse
spaces, into SLg(Z)\H (as stacks, the degree of the map from A,(e~27)* onto its image is,
rather, equal to two, because of the Z/2-gerbe on the target).

Remark 3.12. An additional subtlety is that, to glue f™V to the universal family, requires
in general, a cover of .Z;B which is étale in the punctured neighborhood of the boundary, but
branched over the boundary divisors. For instance, when B = R>¢B is a ray, this branched
cover is necessary if and only if B is imprimitive (Rem. 3.6). Such a branched cover of .Z;B% is
guaranteed to exist in an affine open neighborhood of the deepest toroidal stratum, as shown
in Proposition 2.29. But it is unclear, in general, whether there exists a global étale cover of jg
achieving the desired branching behavior. For example, supposing the monodromy cone were of
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the form B = R>¢{3B, 5B} for By, By primitive—is then the local, toroidal branched cover of
.Z;B which is branched to orders 3, 5 over the two toric boundary divisors 0y, dy C ,ZG]B induced
by passing to a further finite index subgroup of Spy,(Z)?

Regardless, this finite cover does exist in an affine open neighborhood of the relevant boundary
stratum. By a slight abuse of notation, we continue to notate the resulting cover and its toroidal
extension by ,Zg and ./Z;B , even though ,Zg is only étale over a Zariski open subset of A,.

To summarize Constructions 3.8 and 3.11;

Proposition 3.13. Let S be a fan in N x RB satisfying the properties described in Construc-
tions 3.8 and 3.11. In particular, S is M-invariant under the action (13), for a collection of
symmetric bilinear forms {Bi,..., By} C Sym?MY which are the rays generating a polyhedral
cone in the space of positive semidefinite bilinear forms on M, with Zle B; positive-definite.
Then Construction 3.11 produces a flat, proper extension of the universal family over jg, mn

the category of complex analytic spaces,
ni 1B
XT(S) = A
We now examine when a Mumford degeneration is K-trivial:
Proposition 3.14. If S(; ) is a tiling (as opposed to a Q-tiling) of Ng, then the multivariable
Mumford construction f: X(S) — A¥ (see 3.8) is K-trivial: Kxg) ~ 0.

Proof. The universal cover of X(S) admits an analytic open embedding into the toric variety
Y (S), whose anticanonical divisor is the reduced toric boundary. This toric boundary in turn is
the reduced inverse image of the union of the coordinate hyperplanes V (uj - - - ug) C C¥ under
the toric morphism Y (S) — Y (RY,) ~ C*. Thus, if the inverse image of V' (uj - - - uy,) equals its
reduced inverse image, we conclude that Y (S) and in turn X (S) are relatively K-trivial.

To check that the divisors contained in the inverse image of V' (u;) are reduced, it suffices to
restrict to the arc A — A* w s (u,...,u). We now apply Remark 3.4. O

3.2. Weight filtration and dual complex.
Proposition 3.15. Let X(S) — A* be a fan Mumford Construction 3.8 and let X; be the fiber

over a point t € (A*)*. Consider the exvact sequence
0—-N— Hi(X,Z) =M — 0,

see (15). Then N = N C Hy(Xy,Z) is the weight filtration W_o = W_1 C Wy of the limiting
mized Hodge structure on H1(X¢,7Z). That is, there are integral isomorphisms

M ~ grtV Hi(Xy,7Z),
N~ gtV H (X}, 7).

Furthermore, N; ~ NJ" and B; ~ BM™°" where N™Ov: erlV Hy (X, Z) — gt Hy(Xt,Z) and
Bmon ¢ Sym?(grlV Hy(X¢,Z))Y are the monodromy operators and bilinear forms of Section 2.3.
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Proof. The identification of M and N with the stated graded pieces of the weight filtration
follows by construction, see e.g. (15)—the homology group H;(N ® C*,Z) ~ N is spanned
by the vanishing cycles, which are null-homologous in the neighborhood of any 0-dimensional
toric stratum of X (S). Proposition 3.7 shows that the monodromy operator N;"°" agrees with
N;i: M — N and the hypothesis that B = Zle By > 0 ensures that W_y = (im N)%* for
N = Zle N; agrees with N. O

Proposition 3.16. Let X(S) — AF be a fan Mumford Construction 3.8. Then there is a
canonical isomorphism M ~ Hq(I'(Xy),Z) where T'(Xy) is the dual (polyhedral) complex of the
central fiber Xg.

Proof. The dual polyhedral complex of the M-prequotient is the infinite periodic polyhedral

decomposition of Ni given by the preimage of (1,...,1) € R* under the morphism of fans
S — (Rx0)*, see Construction 3.8. It follows that I'(Xg) =~ Sa,..1)/N(M) = Ng/Ap. Thus,
there is a canonical isomorphism H;(I'(Xy),Z) ~ M. O

3.3. Mumford construction, polytope version. We discuss now a polytopal version of the
Mumford degeneration, which outputs a relatively projective degeneration, together with a
relatively ample line bundle. Furthermore, it is isomorphic to the fan construction as in Section
3.1, for an appropriate choice of fan S in Ny x R¥. Our approach is, in part, inspired by
Gross—Siebert [31, Sec. 2|, and their construction of canonical theta functions, building on the
classical theory of theta functions, see e.g. [46, Prop. I11.1.3 and Thm. I.1.3|. It is primarily
based on a “PL version” of the classical theory, in line with Alexeev—Nakamura |7].

Let A = C9/(Z9 @ Z90) be an abelian variety with principal polarization L. The classical
theory of theta functions studies explicit sections of the powers of L, a lift of L, by pulling
back to the universal cover m: C9 — A. Since 7*L ~ O¢y, such sections can be understood via
holomorphic functions on CY9, with appropriate factors of automorphy under the deck action of
the periods Z9 @ Z9¢. Such holomorphic functions are called theta functions. We do the same
here, for the intermediate cover (C*)¢ — A discussed in the introduction, of the fibers A = X;
of a degenerating family of PPAVs X* — (A*)*. These theta functions extend as holomorphic
sections of a line bundle over a toric extension of X* over A*.

Consider the standard torus TY = R9/7Z9 = Mgr/M. We define ZPL/ZL to be the sheaf
on TY of Z-piecewise linear functions modulo the subsheaf of Z-linear functions. On an open
set U C Mgr/M, the sections ZPL(U) = {f: U — R} consist of continuous, piecewise linear
functions, which in a domain D C U of linearity are of the form

(17) flp(m) = aymq + -+ agmg + ag41

with a; € Z. Here m; are integral coordinates on Mg which define local coordinates on D.
Similarly, ZL is the sheaf of locally Z-linear functions on U, of the same shape. A section
ZPL/ZL(U) can be understood globally on U in terms of its “bending locus” (Definition 3.17).
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The pull-back of a section b; € H°(T9,ZPL/ZL) to the universal cover Mg — T9 lifts to
a Z-piecewise linear function b;: Mg — R, since H'(Mg,ZL) = 0. It is integer-valued on
M and, more generally, %Z—Valued on %M for any positive integer w € N. The function
x +— bi(x +m) — b;(x) is a linear function on My for all m € M, because b; is lifted from T9.
Conversely, any Z-piecewise linear function b;: Mg — R, such that b;(z + m) — b;(x) is linear,
for all m € M, descends to a section b; € H(T9,ZPL/ZL) that determines the equivalence
class [b;] uniquely (where b; ~ b} if the difference b; — b} is linear).

The domains of linearity of b; are rational polyhedra. The sections b; for which a lifted
function b; is convex form a convex polyhedral subcone of H°(TY, ZPL/ZL).

Definition 3.17. Associated to b; € H°(T9, ZPL/ZL) is a weighted polyhedral complex in TY,
called the bending locus Bend(b;). Its faces are the codimension 1 polytopes in TY along which
b; is non-linear, and the bending parameter (positive when b; is convex) defining the weight on a
codimension 1 polytope, is the change in slope of the restriction of b; an integral, complementary

segment to the hyperplane containing the face.

Definition 3.18. Let {by,...,bx} € H°(TY,ZPL/ZL) be a collection of convex sections, with
nontrivial bending in every direction, i.e. for every m € M, there exists some i € {1,... k}
for which b;(x + m) — b;(z) # 0 is not identically zero. Equivalently, | J; Bend(b;) cuts T into
polytopes. We say that the by, ..., by are dicing if the polyhedral decomposition | J; Bend(b;)

has integral vertices.

The dicing condition is quite restrictive, since only the origin of TY9 may appear as a vertex
of | J; Bend(b;). We will relax this hypothesis in Construction 3.38.

Example 3.19. Let ¢ = 1 and M = Z, so that Mr/M = R/Z. Define a PL function
b: R — R which is linear on each interval [m,m + 1], m € Z, and has values on Z equal to
2

b(m) = (m? — m). The graph of b is depicted in the left of Figure 2. The locus where b is

non-linear is Z, hence Bend(b) = {0} € R/Z = T!, with weight one, see Figure 4.

Remark 3.20. Any projective morphism X — A* of analytic spaces gives rise to an algebraic
family X > Spec C[[u1, . .., ug]], the formal completion of X — AF. Indeed, the projectivity
of X — A¥ implies that there is a positive integer N such that X c AF x PV is cut out by
homogeneous polynomials whose coefficients are convergent power series. The completion X is
then cut out by the same equations, viewing the convergent power series as formal power series
in Cllug, ..., ugl

Construction 3.21. Let {b1,...,b;} € H°(TY,ZPL/ZL) be a collection of convex sections,
with nontrivial bending in every direction, and assume that the by,...,b; are dicing. Let
v E %M/M € TY be a i—integral point of TY, for some positive integer w € N. We define the
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weight w theta function associated to T to be
(18) Op(Z1,s .+, 2g, ULy - ., Up) = Z (zfl(v) - zgg(v)uil(v) . -uzk(v))w
v EV+M
where x; is the i-th coordinate function, cf. |7, Sec. 4.5].
The condition that the b; have bending in every direction ensures that this power series
converges in an appropriate power series ring (which notably involves both negative and positive
powers of z;). Consider the C[[uy, ..., ug]]-module

Ry,....be) = P Cllu,..., wl] - O

w=0 3¢ L M/M
Expanding the product of two theta functions Og,, Oz, of weights w;, wy by collecting all

monomial terms into M-orbits (see (23) below), we see that there is an expansion

(19) 05,05, = Z s (un, ... ug) O,
EgemM/M
where the coefficients cgf@ (ui,...,ur) € Z[[u1, ..., ux]] are integral power series, as opposed to

simply Laurent series, by the convexity of the b;, see e.g. [31, Eqn. (2.5)]. Note that to get a
nonzero coefficient, there must be a lift of U3 of the form

W11+ wava

Va =
3 w1 + w2
Hence R(by,...,bs) is closed under multiplication. It is, furthermore, a finitely generated,
graded ring over C[[uy, ..., ux]]. Consider the resulting projective C[[uy, ..., ux]]-scheme
(20) Projeuy,....up]] R(by,...,bx) — SpecCl[u, . .., ug]].

It is a degeneration of PPAVs of dimension g, with the theta functions providing the projective
embedding, which is the completion (in the sense of Remark 3.20) of a relatively projective

complex analytic degeneration
(21) fX(Bl,,Bk)%Ak

over a polydisk. This can be proven e.g. by observing that Oz are analytically convergent power
series on a Mumford fan construction when all |u;| < 1, a fact which is justified in the course

of the proof of Theorem 3.29. We call f the Mumford degeneration associated to {by,...,by}.

Remark 3.22. That the generic fiber of (20) is an abelian variety, also follows from the classical
theory of theta functions.

We have assumed that the b; are dicing, see Definition 3.18. Define I' € Mg x R¥ as the
overgraph of the collection of functions (by,...,b;): Mg — R*, that is,

(22) T =T(b1,...,b0) + (Rs0)* € Mg x R
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Then, T is an infinite convex, locally finite polytope in M x R¥ whose faces are integral
polytopes. We may think of the lattice points, in I' N (M x Z*), as the monomial sections of
O(1) on the corresponding infinite type toric variety Y = Yr, see Section 2.4. Similarly, we may
think of the 1-integral points of I' as the monomial sections of O(w), cf. Remark 2.21.

Then, the theta function Oz for v € %M /M is the result of summing such monomials, over
an M-orbit, where m € M acts on Mg x R¥ by the affine-linear action

(23) (z,7) = (z+m, 7+ b(z + m) — b(z))

and b = (b,...,bs). Note that this action of M preserves I'.
Form the normal fan S to I'. As (23) gives an action of M on I, it induces an M-action
on §. This action agrees with the action (13) for a multivariable Mumford fan construction,

associated to the bilinear forms By, ..., By € Sym?MY" defined by the equations
(24) Bi(m,m’) := b;(m + m') — b;(m) — b;(m’) + b;(0), m,m’ € M.

By the convexity of the b;: Mg — R, the normal fan S ¢ (Mg x R¥)Y admits a canonical
morphism to the fan RE, € R* ~ (R¥)V, given by restricting linear functionals in (Mg x R¥)Y
to R¥. Then, the data of S, together with the projection to R@O, defines the data of a Mumford
fan Construction 3.8. We will prove that X (by,...,b;) ~ X(S‘) in Theorem 3.29.

To “twist” the construction, as in Constructions 3.3, 3.8, 3.11, by some continuous parameters
a = (aij) € Symg,,(C*), and produce a universal degeneration which represents all possible
continuous moduli of degenerations of the specified combinatorial type, we must introduce
appropriate coefficients

OU(21, vy 2g, ULy .oy UE) = Z dv(a)(zfl(v) . 'z;ﬂg(v)ulil(v) e qu(U))w
v €Ev+M

for d,(a) € C*. This twists the structure constants to give a graded ring R%(by, ..., by) and
ranging over the moduli of a, produces a relatively projective multivariable Mumford de-
generation over the base which is a SpecC[[u1,...,u]]-bundle over (C*)P, D = dim A, —
rank R{By, ..., Bx}. It agrees on the general fiber with the quotient by the family of subgroups
au? b -uf’“. These constants d,(a) form part of the so-called “degeneration data” of [17]. &
Notation 3.23. The construction of the ring R(b1,...,bx) depends only on the b; and not
the lifts b; to PL functions on Mg. But it is usually easiest to specify b; by providing the PL
function b;: Mg — R. With this in mind, we will henceforth notate the Mumford degeneration
X(by,...,b) = AF by X (by,...,bx) — AF, Bend(b;) by Bend(b;), etc.

Remark 3.24. The number of theta functions Oz of weight w is exactly w9. These functions
form the theta basis, a canonical (up to scaling) basis of sections of HO(X (by,...,bx), L)
where £ = O(1) is a lift of the relative principal polarization. In particular, © = V(©j)
extends as a Cartier divisor over the degenerating family X (by,...,by) — AF.
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Since the b; are dicing, I' is an integer polyhedron, which is why Oy (1) is Cartier on Y =
Yr. It also admits a natural linearization with respect to the M-action. This is why the
principal polarization extends, as a line bundle, to X (by,...,bg). Absent the dicing condition,
one may consider the least positive integer d for which the overgraph I' is a %(M x 7F)-integral
polyhedron. Then Oy (d) defines an integral polyhedron and so descends as a line bundle on
X (b1,...,b;) which is a lift of d times a principal polarization on the smooth fibers.

Definition 3.25. We say that {b;,...,by} are é—dicing if they are QQ-piecewise linear, the

corresponding overgraph I of T'(by, ..., bx) C Mg x R¥ is a é(M x ZF)-integral polyhedron, and
in the local form (17), the slopes a1,...,aq € Z are still integral, but we allow ag41 € éZ. We
denote sheaves of functions with such a local form by ZliZPL and éZL.

Construction 3.26. Like Construction 3.11 vis-a-vis Construction 3.8, we generalize Con-
struction 3.21 to the case where {by,...,b;} are the extremal rays of a convex polyhedral cone
b C H°(TY,ZPL/ZL) mapping isomorphically to a convex polyhedral cone B C 77; , under the
map b; — B; with B; € Sym? MV defined in (24). We replace (b1, ..., b;) by the PL function
Mg — (Rb)Y ~ RUImED
m +— (b— b(m)).

Otherwise, the details of Construction 3.21 are the same. The output is a relatively projective
degeneration of abelian varieties

X(b) — T(b) C Y(b)

over an analytic tubular neighborhood of the torus fixed point of Y (b). Performing this con-
struction with the universal twist by a € Sym,,  (Z)/(B) ® C*, for B = R>o{ B, ..., By}, and
extending/descending over the toroidal extension .,ZEJB as in Construction 3.11, we may produce

a relatively projective analytic extension of the universal family
univ 1B
X"(b) — A,
see Proposition 3.13. We will show in Section 6 that X"V (b) — .Z;B is an étale-locally projective

morphism of algebraic spaces over AV;B. &

Remark 3.27. Our primary case of interest in [27] is where b defines a simplicial cone B C 73;
and in this setting, Constructions 3.8 and 3.21 over a polydisk will suffice.

The next proposition follows directly from Construction 3.21:
Proposition 3.28. Let (TY,by,...,b;) define a polarized, multivariable Mumford degeneration

X (by,...,b) — AF. Then the following hold:

(1) The intersection complex of the fiber X1 over the generic point of the coordinate subspace

V(u; : i € I) is the polyhedral decomposition | J;c; Bend(b;) of T9.
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(2) The polytopes of this polyhedral decomposition, when compact, are the polytopes of the
polarized toric components, in the sense of Remark 2.21.

(3) Non-compact faces F of | J;c; Bend(b;) are of the form F ~ Fy x T" with Fy compact.
The dimension of the abelian part of the corresponding component of Xy is h. This
component is a toric variety bundle over an abelian h-fold, possibly self-glued, where the
toric variety has polytope Fy.

Sketch. The universal cover of the Mumford construction is the toric variety Yr whose polytope
is I', and hence I' is the intersection complex of this universal cover. Then the intersection
complex of the Mumford construction itself is the quotient by the M action, and the stated
description follows—components with an abelian factor of dimension A > 0 arise from infinite
faces of I' stabilized by a rank h subgroup of M. See also Theorem 3.29. O

3.4. Comparison of polytope and fan constructions. We explain why the polytope con-

struction of the Mumford degeneration coincides with the fan construction.

Theorem 3.29. Let {by,...,by} € H(T9,ZPL/ZL) be a collection of convex sections, with
nontrivial bending in every direction, which are dicing. Define I' C Mg x R¥ as in (22), and
let S be the normal fan to I'. Then, there is a canonical isomorphism of analytic spaces

X(b1,. .. by) ~ X(S)

over AF, where X (by,...,b,) — AF is the polytope Mumford degeneration defined in (21) and
where X(S) — AF is the fan Mumford degeneration defined in (14).

Proof. Let Y = Yr be the locally finite type toric variety defined by the polytope I', as in
Section 2.4. Then Y = Y(S) by definition, and the M-action (23) on I', which we denote m - —,
defines a linearization of the line bundle Oy (1) associated to the polytope I'. A i—integral
point (v,7) € I'NL(M x Z¥) defines an analytic section (z, w) VW) = 0T € HO(Y, Oy (w)).
When this %—integral point lies on the graph I'(by,...,b;), we have the equality

(25) Oz(z,u) = Z (z,u) @)
meM

of analytic functions, on the analytic open subset of Y where all |u;| < 1. Convergence holds
because the b; having nontrivial bending in all directions (see Definition 3.18), and so with
respect to an exhaustion of M, the powers of v grow quadratically while the powers of z only
grow linearly. If, rather, (v, 7) lies above the graph I'(by,...,by), the corresponding sum over
the M-orbit is simply a monomial in u times Oz(z,u). We deduce that Oz(z,u) descends, as
an analytic section, to H(X(S), L2?) where £ is the descent of the M-linearized line bundle
Oy (1) to the M-quotient X (S).

It suffices then to verify that these descended sections define, for some fixed w, a relatively
very ample line bundle on X (S§)—in particular, that they separate points and tangents. The
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argument is essentially the same as |7, Thm. 4.7|, replacing the Delaunay decomposition with

the more general decompositions | J, Bend(b;) that we consider.

In fact, in the setting where all polytopal faces F cut by | J; Bend(b;) are embedded as opposed
to immersed in TY, the multiplication rule (19) for theta functions Oz for v € F, reduce,
modulo the ideal (uq,...,ug), to the usual multiplication rule (Rem. 2.21) for the monomial
sections of the powers of the line bundle L]y, on the toric stratum Yp C X (S) associated to
F; see Lemma 3.33. Assuming w is sufficiently large, we also ensure that the non-normal union
Xo(8S) = limp YF is projectively embedded via £, One deduces very ampleness for all fibers,

by the openness of very ampleness. ]

For instance, we have the following special case, for 1-parameter degenerations:

Corollary 3.30. Let b € H°(T9,ZPL/ZL) be dicing, with PL lift b: Mg — R and define
I' =T0)+Rsp C Mg x R. Let S be the normal fan to I', and define B € Sym’MY by
B(m,m’) = b(m+m’) —b(m) — b(m’) +b(0). Define a Ag-invariant tiling T of Ng by slicing
S at height 1. Then X (Cone(T)) ~ X (S) ~ X (b). O

3.5. Examples. We now discuss some examples of the Mumford construction.

Example 3.31. The basic example is the Tate curve C*/u”. Here g = 1, so Mg/M ~ R/Z.
Define a PL function b: R — R which is linear on each interval [m,m + 1], m € Z, and has

values on Z equal to b(m) = %(m2 —m). The graph of b is depicted in the left of Figure 2.

FIGURE 2. Mumford polytope construction of the Tate curve, ©;(z,u) in blue,
Op/2(2,u) in red, ©1/5(2,u) in green.
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Then I' = {(m, 3(m* —m)) : m € Z =M} C M x Z = Z* and T is the shaded region in
Figure 2. The theta functions of weight 1, 2, and 3 are

Op/1(z,u) =+ 27308 4 27203 2t 200 4 Ml 4 22t B
Op/2(z,u) =+ + 270 4 2740 2720 200 220 4 2t 4 25
O1/2(z,u) =+ 27000 4 2 3ut + 27l 2t 4 2Bt 4 2Pt 2T 4
Og/3(z,u) =+ 279018 4 27000 4 27303 4 200 + 230 2% 4 20O -
Oy/3(2,u) =+ 2781 270 4 272 4 20 4 2t 2T 4 20
Og/3(z,u) =+ 27 Tu? + 270 + 27 + 220 + 2P0 4 BT+ 2 P

with those of weight 1 and 2 depicted in Figure 2 as the sum of the blue, red, and green
monomials. The normal fan is depicted in Figure 3 and the tiling 7 (i.e. the slice of the normal
fan at height 1) is the tiling of R!/Ap by a segment of length 1. Here Ap ~ 7Z because the
bilinear form on R! defined by the formula

B(z,y) = 3(z +y)* — 32° — §y° = xy

has 1 x 1 Gram matrix [1] € Sym,,(Z).

FIGURE 3. Normal fan of the Tate curve.

The torus T! = R/Z and the weighted polyhedral complex Bend(b) inside it are depicted in
Figure 4 (the most condensed presentation of a Mumford construction). This figure happens
to be the same as the tiling 7, but this is a coincidence. By Proposition 3.28, this polyhedral
decomposition of T' is the intersection complex of the special fiber X of the degeneration of
elliptic curves X = X (b) — A, with strata formed from the polytopes of the decomposition
Bend(b). Hence X is P! glued to itself along two points, 0 and oo.

Figure 5 is a visual depiction of Construction 3.3. By considering the maximal cones of the
normal fan of Figure 4, we see that the universal cover Y (Cone(7)) — A, of the Tate curve
may be constructed as an infinite union of copies of C?:

Y (Cone(T)) = U C%xn,yn)
nez
where the gluings are z,41 = v, ! and 3,41 = 2,y2. The map to C, is given on local charts by
u = TpY, and respects the gluings. Finally, the Z-action is (2, yn) — (Tn+1, Ynt1)-
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FIGURE 4. Bending complex of the Tate curve in R/Z. The integer 1 indicates
the bending parameter, see Definition 3.17.
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FIGURE 5. Top left: Universal cover of the Tate curve. Inverse image of AY
depicted in red, with embedding into (C*)2, in grey. In the toroidal extension
Y (Cone(T)), the fiber over 0 € A, in blue is an infinite Z-periodic quilt of toric
varieties, given by gluing an infinite chain of P's. A Z-orbit of co-characters
passing through (1, 1) € (C*)? and forming sections over C,, is depicted in green.
Top right: The Tate curve, with general fiber C*/u” in red, central nodal fiber
in blue, and section in green.

Example 3.32 (Multiplication of theta functions). In general the multiplication rule for theta
functions is quite complicated, but here we check that for the central fiber u = 0 of the Tate
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curve, Example 3.31, the sections of £&3 define an embedding of a nodal cubic Xq(b) < P2. In
addition, the computation will show that the generic fiber of Projcy, R(b) — Spec Cl[u]], see
(20), is a smooth cubic plane curve, as also follows from Theorem 3.29. See Remark 3.22.

By quotienting by the ideal (u), the multiplication rule (19) significantly simplifies. Generally,
a product of two monomials lies in the ideal (uy, ..., ux), whenever they lie over distinct domains
of linearity of the b; as then their product, viewed as a lattice point in M x ZF, lies strictly
above the graph I'(by,...,bx) by convexity. We deduce:

Lemma 3.33. O, - O3, = 0 mod (u1,...,ux) whenever vy, Us do not lie in any common
polyhedral domain of |J; Bend(b;) C T9. Furthermore, if both Dy, vy lie in the interior of a

polyhedral domain of mazximal dimension, then we have

@51 . @@2 = @w161+w262 mod (ul, ce ,uk).
w1 +wg
Otherwise, the multiplication rule mod (u1, . .., u) must take into account the fact that there

are might be multiple representatives v1, vy of U1, 79 which lie in the same domain of linearity.
In any case, we may apply this comment and Lemma 3.33 to the weight 3 theta functions of
Example 3.31. We deduce the following multiplication rules mod wu:
@3/3 = 09 + 3039 + 3059 @§/3 =039
@(2)/3@1/3 = 0179 + 2049 + O7)9 @%/3@2/3 = Oy)9 @0/3@%/3 =039 + O5)9
@(2)/3@2/3 = O3/ + 2059+ Ogjg 13035 = Os9 @0/393/3 = 0479+ O7)9
©0/301/302/3 = O3/9 + Og/9 93/3 = Og9

as only 0/3 € M/M C R/Z lies in multiple domains of linearity of b.
These are the ten cubics in Sym®H(X((b), £&3), and there is indeed one linear relation:

O0/301/302/3 = 9?/3 + 93/3 mod u,

which gives the projective equation {zyz = 23 +y3} C P? of a cubic curve, with a simple node at
[0:0:1]. Computing the expansion of theta products rather over C[[u]]/(u?), one additionally
sees that the local equation of the node in the total space is xy = v and hence the general fiber
of X(b) — A is a smooth elliptic curve.

Example 3.34 (Theta graph, 1-parameter). Now consider the 1-parameter Mumford degener-
ation (T2, b) corresponding to the PL function
mi—mi | mj—mg  (mi+ma)® — (mi+my)

b(ml, mg) =T 9 + 9 9 T3 5

on M = Z? where (r1,72,73) € N? is some fixed vector. Then b is convex and the boundary of
I" is depicted in Figure 6.
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FIGURE 6. The graph of b over M = R?, for values 7 = ry = 13 = 1.

EN

FIGURE 7. Bending complex of b in T2.

We have, for instance, the weight 1 theta function

O0/1,0/1) (21, 22,u) = -+ + zl_lz% u' + 2023 u° + 220 u"
+ 2712yt + 2029 o0 + 2129 u°
+ Z1—122—1u7'1+7“2+37'3 + Z?Z2—1UT2+T3 + 2%22—11/'2 4.

e.g. since b(—1,—1) = 71 + ro + 3r3. The bending complex of b is depicted in Figure 7. The
associated bilinear form has Gram matrix

B—r10+7’00+r11
~ oo 1o 1 (1 1
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s

FIGURE 8. Fundamental domain for the A g-action on R?, (ry,72,73) = (3,2,1),

and tiling 7, arising from slicing the normal fan at helght 1.

and the tiling 7 is depicted in Figure 8.
To produce the universal 1-parameter Mumford degeneration, requires twisting the construc-

tion by a € Symy,(C*)/uf ~ (C*)2.

Example 3.35 (Theta graph, 3-parameter). We now modify the previous example, by instead
taking a 3-parameter Mumford degeneration for (T?, by, bg, b3) where

2 2

m? —my ms — ma — (m1 + m2)

2 ’ 2 ’ 2 ’
This example is originally attributed to Deligne [44, Sec. 7|; called by Mumford the “keystone”
of the compactification of Ay. The figure is similar to Figure 6, but we now use three different
colors, to indicate the different bending loci Bend(b;), for i = 1,2, 3. See Figure 9.

The theta function of weight 1 is

(m1 + ma)

b1(mi,ma) = ba(mi,mg) = bs(mi, ma) =

-1,1,1,0 0 0,1,0 0 0 1,1,0 0 1

O0/1,0/1) (21, 22, U1, U, u3) = - -+ + 21 Zpujuguy  + 232U UQU3 212U U3
-1,0,1,0, 1 1

+ 2 zgulugug +z(1)zgu(1)ugug +zlzgu?ugug

“1,-1,1.1 -1 101
T2 % ui“Q“% + 2(1)22 u?u%ué + z}z2 u?UQUg N

Note that, upon restriction to the co-character Spec C[[u]] C Spec C[[u1,uz,us]] defined by
(u1,ug,uz) = (u™,u",u™) with (r1,re,73) € N3, we get ©(0/1,0/1)(21, 22, u) from Example
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1

FIGURE 9. Bending complexes of by, by, b3 in T2, in red, green, and blue, re-
spectively. The integers are the bending parameters of by, ba, and bs.

3.34, and indeed, the multivariable Mumford construction restricts to a 1-parameter one along
this co-character, and B = r1 By + roBs + r3Bs.

To understand the fibers of X (by,b2,b3) = X — A3 over the various coordinate subspaces,
we refer to Figure 10. By Proposition 3.28, the polytopes of the components of the fiber over
(u1,u2,u3) € A3 of the Mumford construction can be read off from the bending loci of the b;
for which V(u;) = 0. The fiber over the origin is the union

X(070’0) == PZ UA ]PJQ

of two copies of P? along a triangle of lines, so that the intersection complex is the upper left
of Figure 10. The limit of the theta divisor is the union of two lines

V(e(O/l,O/l)) N X(070,0) =/l U¥ly C ]P)Q UA Pz.

The fiber X (g ;) over a point on the uz-axis is normalized by the square (P! x P!,0) and
results from gluing two sections (the top and bottom of the square) and two fibers (the left
and right of the square). The gluing isomorphisms are uz € C*, u3 1€ C*. The theta divisor
V(©(0/1,0/1)) lies in the linear system of O(1,1) on the normalization, and glues to a Cartier
divisor on the non-normal surface X(g ;). The fibers over the u;- and ug-axes of A3 are
similar; the intersection complexes are in the top row of Figure 10.

Over a general point of a coordinate hyperplane V' (u1), the fiber X (g, ;) is the result of
gluing a P'-bundle Px(O @& M) over an elliptic curve E to itself, M € Pic’(E), by gluing
the 0- and oo-sections of the bundle by a translation depending on M. Fibers over the other
coordinate hyperplanes are similar, and the corresponding intersection complexes are the first

three figures in the second row of Figure 10. Finally, the general fiber X over a point

U1,U2,U3)

(u1,u2,u3) € (A*)? is a smooth, principally polarized abelian surface with V(©(0/1,0/1)) the
theta divisor.

3.6. Base change and Veronese embedding. Let X (b1,...,bx) — AF be a Mumford con-
struction on a collection of convex sections b; € H°(TY,ZPL/ZL), see Construction 3.21, and
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RS

A

FIGURE 10. Intersection complexes of the fibers of the Mumford construction.

consider a monomial base change, of the form A™ — A*_ such that the pullback of coordinates
u; are of the form

up = wit -

Swpin =: wﬁ,
(26)

up = wikt - wpke = w'k
Proposition 3.36. The base change of the Mumford degeneration X (b, ..., b;) — AF along a
monomial base change A™ — A¥ is the Mumford construction X (ci,...,cp,) — A" associated
to the convex PL functions

cj = lebl + -+ rkjbk.
Proof. Substituting (26) into the defining equations for Oz in (18), we see that the result is
again a Mumford degeneration X(ci,...,¢,) — A™ where ¢; has the stated formula. O

A simple case is exhibited by Examples 3.34, 3.35, where we make the monomial base change
A — A3 w e (W w™,w") to Example 3.35, to get Example 3.34.
Remark 3.37. A base change A*¥ — AF ramified over the coordinate hyperplane V (u;) to
order r; is given by u; = w:i and we have the simpler relation ¢; = r;b;.

We now consider the effect of replacing L with dL for some positive multiple d > 0 of the

principal polarization. Equivalently, we are taking the Veronese subring
R(by,....bp) D c R(by, ..., by)

consisting of the theta functions of weights w divisible by d. The passage to the Veronese
subring suggests also a natural generalization of Construction 3.21, which allows us to relax the

restrictive dicing condition:
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Construction 3.38. Consider convex sections
b € H(T?, 1ZPL/17L)

for some positive integer d, see Definition 3.18. Then, we may define theta functions similarly
to formula (18), but only for the weights w divisible by d. Assuming that the b; are é—dicing
on T9 (Def. 3.25), we may deduce from Remark 3.24 that dL lifts to an ample line bundle on
the resulting degeneration, which we denote by

X(d|by,... by) — AF.

While the general fiber of the degeneration still admits a principal polarization L, only dL
extends to a line bundle on the total space, in general.

In terms of the polytope, we still take the overgraph T' = T'(by,...,b) + (R>0)¥, which is
now only a %(M x ZF)-integral polyhedron. Then, as in Remark 2.21, we consider Cone(T") C
(Mg xRF) xR but one only considers monomials, and their M-averagings (25) to theta functions,
lying in (M x ZF) x dZ. The general fiber of the Mumford construction is still the quotient by
M of N ® C*; in particular, the exact sequence (10) still holds. s

Remark 3.39. The isomorphism type of the degeneration X (d | by,...,b;) — A* does not
depend on the lifts b; of b; but the choice of origin section does, since different lifts of b; shift
the normal fan, and thus affect which subtorus forms the origin section, see Remark 3.9. The
same applies to Construction 3.26—to produce an extension of the universal family over j}?
requires a choice of lift of cone b € H(T9, 1ZPL/1ZL) into H°(Mg, 2ZPL) as the gluing with
the universal family fg — .Zg depends on a choice of origin section.

Example 3.40 (Base change and resolution of the Tate curve). Consider the following Mumford
constructions of degenerating elliptic curves:

(1) The Tate curve, i.e. Example 3.31.
(2) The order 3 base change u = w3 to Example 3.31.
(3) The order 3 Veronese embedding of (2).

These are encoded respectively by the following data:
(1) R/Z, bV = F(m?> —m)onm€Z, d=1.
(2) R/Z, 0@ = 3(m? —m)onmeZ,d=1.
(3) R/Z, b = b3 d =3 (see the outer edge of Figure 11).
The total space of the Tate curve X (b)) is smooth and the central fiber Xo(b(!)) is an
irreducible nodal curve (i.e. of Kodaira type I1). The total space of the base change X (b)) is
singular, with an As-singularity at the node point of the irreducible central fiber. The spaces

X(3 ] b@) ~ X(b®?) are isomorphic degenerations over A, with the former polarized by 3L
rather than L.
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FIGURE 11. Above: order 3 base change of the Tate curve, with polarization
O(3), and resolution. Following Remark 3.38, grid points are (3Z)?. Below:
normal fan of the order 3 base change, and of the resolution.

* o @ \\\ /,’ * @ @

To resolve the total space X (b(?)), we take the minimal resolution X -5 X (b)), which
resolves the Ag-singularity to a chain of two (—2)-curves E; + Ea. Then the central fiber
X — Ais an I3-type Kodaira fiber, i.e. a wheel of P's of length 3.

To realize this resolution as a polarized resolution, first, we pull back 3L to X. It has
multidegree (3,0,0) on the three components of the wheel. Now, we twist, defining

L:=3L— E, — E».

The resulting line bundle has multidegree (1,1,1) on the wheel, and the overgraph of the
Mumford degeneration defining ()? ) E) — A is shown in gray in Figure 11.

On the 3Z-prequotient, this is the usual blow-up operation on polytopes of polarized toric
varieties, which cuts a corner off the polytope, whose size depends on the chosen polarization on
the blow-up. The cut corners are depicted in green in Figure 11. The normal fans are depicted
in the bottom of Figure 11. We see that, indeed the normal fan for X = X (3 | %b(l)(Sm))
is a 3Z-invariant refinement of the normal fan to X (b(®). Thus, there is a 3Z-equivariant
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FIGURE 12. Left-to-right: the Tate curve, the order 3 base change of the Tate
curve, the order 3 base change of the Tate curve plus 3rd Veronese embedding,
and its polarized resolution. Integers at blue vertices are the bending parameters.

toric morphism between the corresponding toric varieties, descending on quotients to give the
minimal resolution.
In terms of T! and the bending loci, the various operations are depicted in Figure 12.

4. REGULAR MATROIDS

We now discuss the construction of Mumford degenerations associated to regular matroids.

4.1. Matroids, graphs, and quadratic forms.

Definition 4.1. A matroid R = (R, E) is a finite set E, together with a collection R of

independent subsets of E, satisfying the following axioms:

(1) The empty set is independent.

(2) Any subset of an independent set is independent.

(3) If I, J C E are independent sets with |I| > |J|, then there is an element i € I\ J for
which J U {i} is independent.

The set E is called the ground set of R.

These axioms encapsulate the concept of linear independence of a collection of vectors in
a vector space. A basis is a maximal independent subset ' C E, and a circuit is a minimal
dependent set. Note that all bases of R have the same cardinality by Def. 4.1(3); this cardinality
is called the rank of R.

The dual matroid R* is a matroid on the same ground set E/, whose bases are the complements
of bases of R. A circuit of R* is a cocircuit of R.

Definition 4.2. A realization of R over the field F is a map ¢: E — FY to an F-vector space
for which the independent sets E' C E are exactly those for which {¢(i)};cp are linearly
independent. A matroid R is regular if it admits a realization over any field. An integral
realization of a regular matroid is a map ¢: E — N to a free Z-module N which gives a
realization of R upon base change N ®z F to any field F.
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We will always assume that ¢(F) generates the lattice N. In particular, the rank of R agrees
with the rank of N.

By a theorem of Tutte [63], every regular matroid can be defined by a totally unimodular
matriz, that is, a matrix all of whose minors (in particular, all entries) have determinant in
{£1,0}. Then, an integral realization of the matroid arises by considering the set of column
vectors. More generally, any unimodular matriz—an integer entry matrix whose maximal minors
have determinant in {£1,0}—defines an integral realization of a regular matroid [65, Ch. 3,

Thm. 3.1.1]. Equivalently, the lattice spanned by any collection of columns is saturated.

Example 4.3. Let G be a graph and let E = E(G) be its set of edges. Choose an orientation
on the edges. We have an inclusion Hi(G,Z) C Z” as every homology class v € Hy(G,Z) can
be viewed as a Z-linear combination of directed edges.

Let e; denote the basis vector of Z¥ corresponding to the i-th edge and let X; :== e/ € (ZF)Y be
the corresponding coordinate function. By restriction, we get a linear function x; € H1(G,Z)" =~
HY(G,Z). The cographic matroid M*(G) of G, on the ground set E, has realization

E — H'(G,Z),
1 X,
The graphic matroid M(G) is the dual matroid, and has realization
E —7ZF/H\(G,7),
1€
where €; is the image of e; under the natural quotient map. Its rank is |E(G)| — rk(H1 (G, Z)).

The graphic and cographic matroids of G are sometimes called the cycle and bond matroids of
G, respectively, in the matroid literature.

Remark 4.4. Let T' C E be a spanning forest of G. Associated to T is a basis of H,(G,Z)
indexed by the edges in E'\ T: each edge i € E'\ T completes a unique closed circuit C; of the
graph G whose edges lie in T'U {i}. These closed circuits determine a Z-basis of H;(G,Z) and
form the circuits of the graphic matroid M (G).

Let g = g(G) be the genus of the graph and k& = |E| be the number of edges. Then, in this
basis, the integral realization of the cographic matroid M*(G) in Example 4.3 is a g X k matrix
of the form M, = (Id, | P) where P is a matrix of 0’s and £1’s, and whose i-th row consists of
the directed edges of T involved in the circuit Cj.

Example 4.5. If G is taken to be the theta graph (see Figure 13), with (g, k) = (2, 3), and the
spanning tree T is {e3} C E, then
1 0 1
M} =
¢ (0 1 1)

because the circuits completed by e; and eg are, respectively, e; + e3 and es + e3.
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€1

FIGURE 13. The theta graph, with spanning tree in red.

Definition 4.6. Let i — x; € N ~ M" be an integral realization of a regular matroid R. Then
the associated matroidal cone Bg is the R>g-span of x? € Sym*M".

For example, let G be a graph. Its cographic cone Byr«() is the cone of symmetric, positive
semi-definite bilinear forms on Hi(G,Z) given by

BM*(G) = RZQ{X% NS E(G)}
={MgD(Mg)" : D diagonal with D; > 0} C Py

See Alexeev-Brunyate and Melo—Viviani for analyses of which matroidal cones appear in
various toroidal compactifications of A, [5, 41].

Example 4.7 (Seymour-Bixby [58, 13]). Consider the totally unimodular matrix

10000 -1 1 0 0 1
010001 -1 1 0 O
Rp=(0 0100 0 1 -1 1 0
0oo0o010 0 0 1 -1 1
ooo0oo01 1 0 0 1 -1

Then, the columns of Ryg define a regular matroid on 10 elements in Z®. We have already seen
this matroid, which can be identified with the 10 vanishing cycles v; € gr‘inVZ ~ 77 of the
nodes of the Segre cubic threefold, Vz = H3(Y,,Z)(—1), see Example 2.16.

The associated matroidal cone is

BEm = RZO{X% X%,X%, X4211 ng (X5 — X1+ X2)2a (Xl — X9 + X3)27
(x2 — x3 + x4)?, (x3 — x4 + x5)2, (x4 — x5 + X1)2} c Sym*’MY @ R
where x; fori = 1,..., 5 are the coordinates on M ~ Z? given by the first five columns of Rig. A
particularly nice realization of R, over F3 is as the 10 vectors in (F2)®%/Fy(1,1,1,1,1,1) which

have exactly three nonzero entries, cf. Example 2.16. In this realization, the full automorphism
group Sg ~ Aut(R,q) is readily visible.

Remark 4.8. Examples 4.3 and 4.7 are essentially different: the matroid R, is not isomorphic
to M(G) or M*(G), for any graph G, see e.g. [58].
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Definition 4.9. Let f*: X* — Y™ be a smooth, projective family of PPAVs over a smooth
quasiprojective base Y*, and let Y* < Y be an snc extension. We say that the morphism f*
is matroidal with respect to the extension Y if:

(1) the monodromy at the boundary Y \ Y* is unipotent, and
(2) the monodromy cones at all snc strata of Y\ Y* are matroidal cones.

Matroidal morphisms exist, in view of the following result:

Proposition 4.10. Let (R, E) be a reqular matroid of rank g on a k element set E = {1,...,k},
with integral realization E — N = MY, i+ x;, and let (r1,...,7:) € N¥ be a vector of positive
integers. Then there is a smooth projective family f*: X* — Y™ of g-dimensional PPAVs over

a smooth quasiprojective base of dimension k, such that the following hold:

(1) There is a smooth extension Y* C Y with snc boundary divisor D =Y \ Y* and an
embedded polydisc A¥ C Y such that the restriction of D to AF agrees with the union
{uy - -up = 0} of the coordinate hyperplanes.

(2) Consider the base change XFA*)’C — (AN and let t € (A*)F. Then there is an isomor-
phism grgVHl (Xt,Z) ~ M under which the monodromy bilinear form B; around the i-th
coordinate hyperplane (Def. 2.6) is given by r;x3.

Proof. Apply Corollary 2.30 to the symmetric bilinear forms B; = r;x? € 77;' NSymg,,(Z). O
In the following sections, we will study regular extensions f: X — Y of matroidal morphisms.

4.2. Mumford degenerations associated to regular matroids.

Definition 4.11. A hyperplane arrangement is a finite collection {H;};cs of torsion translates
H; C T9 = Mg/M of codimension 1 subtori. Equivalently, it is a finite collection {H;};cr
where H; is the union of all M-translates of an affine linear hyperplane in My defined over Q.

Let x1,...,x% € N be a finite collection of vectors, rank N = g, giving an integral realization
of a regular matroid R. Each x; defines a family of parallel hyperplanes

(27) H;={m e Mg : x;,(m) € Z} C Mg.

Then {Hy, ..., H} defines a hyperplane arrangement, see Definition 4.11. Moreover, H; is the
bending locus of the convex ZPL function b; on My that satisfies

XimQ—xim
) = 20—

Note that b; descends, as a convex section b; € H°(TY, ZPL/ZL). The regularity of the matroid
implies that the b; are dicing, i.e. the polytopes cut by the union of hyperplanes Hg := Ule H;

for m € M.

have integral vertices. See Erdahl-Ryshkov [28].
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Definition 4.12. We define the matroidal Mumford construction X (R) — AF to be the Mum-
ford construction X (by,...,b;) — A associated to the collection (T9,by,...,b;) of sections
b; € H°(TY,ZPL/ZL) above, defined by the regular matroid R.

Then k is the size of the ground set of R while the dimension g of the fibers is the rank of R.

By construction, the monodromy cone of the matroidal Mumford construction on R is given by
2

the matroidal cone Br C ’P; because the bilinear form B; associated to b; is B; = x;.

Example 4.13 (Cographic matroids). We have implicitly seen an important matroid, realized
by the vanishing cycles associated to a nodal projective curve Cy with k nodes, as in Example
2.15. We aim to

(1) identify the matroid realized by the vanishing cycles as the cographic matroid M*(G)
where G := H1(I'(Cy),Z) is the dual graph of the nodal curve, and

(2) under the simplifying assumption that the normalized components of Cjy have genus
zero, use this identification and Construction 4.12 to compactify the relative Jacobian
of the universal deformation 7: C — Defg, =~ A%973 o~ AF x AB9=3)—k

We begin with (1). Let C; be a smooth fiber nearby Cy. Let E = {1,...,k} be the set of
nodes of Cy and let v1,...,vx € H1(Ct,Z) be the corresponding vanishing cycles, unique up to
sign. This realizes a matroid on the ground set E. A choice of sign for each ~; is equivalent to
a choice of orientation of the edges of G = I'(Cy). Using the intersection pairing and Poincaré
duality on Cy, we may view each v; as a linear form on H;(Cy,Z) ~ Hi(JCy,Z). This linear
form vanishes on W_; and hence descends to a linear form on gry’ Hy(Cy, Z) ~ grty Hy(JCy,Z).

We also have an identification gry’ Hy(Cy, Z) ~ H1(T'(Cp),Z); thus ~; is identified with the
linear form on Hy(G,Z) giving the coordinate i +— x; = e € HY(G,Z) of the oriented edge
e; € E(G). So the matroid realized by the k vanishing cycles in C; is isomorphic to the cographic
matroid M*(G). Conversely, the cographic matroid M*(G) associated to any graph G arises
this way, because we can construct a nodal projective curve Cy whose dual complex is G.

We now compactify the relative Jacobian fibration J7°: JC° — (A*)F x ABI=3)=F of the
punctured family 7°: C° — (A*)* of smooth curves, as in (2). So take M = H;(G,Z) and
N = H'(G,Z) and apply the universal form of the matroidal Mumford construction of Definition
4.12. If no x; = 0 nor x; = £x; for i # j (in matroidal language: M*(G) contains no circuits
of length < 2), we get an extension

XU (MH(G)) - Ay
of the universal family. Otherwise, we only get a degeneration
Xémiv(M*(G)) N (Ak)univ

where (AF)univ (C*)(ggl)_f is a k-dimensional polydisk bundle for some ¢ < k, for which the
classifying map (AF)umiv — A, loses dimension. So assume the former. It follows then from
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Proposition 2.27 that the Torelli map extends to a morphism
Defe, ~ AF x ABI=3)=k < JEM(©)
Then the pullback of X" (M*(G)) defines an extension of the relative Jacobian fibration
Jr: JC — AF x AB9=3)-k

where {0} x ABI=3)=F _, 10} x (C*)(ggl)_k maps the locally trivial deformations of Cp into the
. B (o)
deepest toroidal stratum Ay .
Example 3.35 is an example of a matroidal Mumford construction on the cographic matroid
of the theta graph (Example 4.5), where Cy = P* U0, 1, 00} P! is the union of two smooth rational
curves along three points. The dual graph I'(Cy) is the theta graph, as depicted in Figure 13.

Example 4.14 (Matroidal Mumford degeneration on R;,). Another example comes from the
Seymour-Bixby matroid R;, (Example 4.7) which gives a degeneration X (R;,) — A of PPAVs
of dimension 5 over a 10-dimensional polydisk. To produce a universal degeneration whose
monodromy cone is Br,, we must twist by a € (C*)® (here 5 = 15— 10 and 15 = dim As). The
resulting universal Mumford degeneration is an extension of the universal family

Xuniv(ﬂlo) - -"TEI)B&O-

If m: Y — Defy, ~ A0 is the universal deformation of the Segre cubic threefold (Example
~B

2.16), there is a morphism Defy, — A; 10 transversely slicing the deepest toroidal boundary

stratum (C*)®. The intersection is transverse because the monodromy about each coordinate

: . : ~B
hyperplane is B; = x7—thus, in toroidal charts of A 10

, the period map is approximated by
a translate of a subtorus which transversely slices the deepest boundary stratum. The pullback
of X"V(R,,) defines an extension IJmw: IJY — A!9 of the relative intermediate Jacobian

fibration IJ7°: IJY° — (A*)' over the smooth locus.

Remark 4.15. By [41, Lem. 4.0.5, Cor. 4.0.6], we do not need to pass to some étale cover
.Zg — Ay to produce the toroidal extension associated to a matroidal cone—up to quotienting
by the group of symmetries of R and identifying some faces, every matroidal cone Br on a
regular matroid R with no loops or parallel edges (simple regular matroids in loc. cit.) embeds
into (Ag)trop as in Example 2.25. Indeed, there is a universal matroidal extension A, — Argnat
whose fan is the union of all matroidal cones, on regular matroids of rank < g, with no loops or
parallel edges. By [41, Thm. A], A;nat is the toroidal extension of the maximal common subfan
of the first and second Voronoi fans.

4.3. Shifted and transversely shifted matroidal degenerations. We describe here a mod-
ification of the matroidal Mumford construction of Definition 4.12 which produces a regular
total space; this property is quite special, and under some additional hypotheses, characterizes
Mumford degenerations with regular total space.



50 ENGEL, DE GAAY FORTMAN, AND SCHREIEDER

Construction 4.16 (Shifted matroidal degenerations). Suppose that F — N, i — x; gives
an integral realization of a regular matroid. Consider the family of parallel hyperplanes HY =
{m e Mg : x;(m) € Z} C Mg for i € E. Then, all H? intersect at all lattices points M, or in
the quotient T9 = Mg /M, at the origin. Thus, we consider the shifted hyperplanes

Hi={meMpg : x;(m) € ¢ +7Z}

for ¢; € éZ. For sufficiently large d, it is possible to choose values of ¢; for which this shifted
hyperplane arrangement {Hy, ..., Hy} satisfies the following additional property:

Definition 4.17. A hyperplane arrangement { H; };cs is transversal if at any intersection point
p € (;er Hi the normal vectors of H; for i € I are linearly independent.

Associated to H; (transversal or not) we define a piecewise linear function b;: Mg — R by

the properties that:

(1) bi(m) == %(xi(m —mg)? — x;(m — my)) for any m € mg + M where mgy € My, is any

point for which x;(mg) = ¢; and
(2) Bend(b;) = H; is the shifted family of hyperplanes.
2

¢ are the same as for the unshifted case.

While the function b; is not integer valued on integer points, it is é—integer valued on é—

The associated bilinear forms B; = x

integral points. Thus, by Construction 3.38, we may take a Mumford degeneration
f:X(d]|by,... b) — AF

whose monodromies B; are the same as those of the matroidal Mumford degeneration. More
generally, we have, by Construction 3.26, a universal form X"V (d | by, ..., b;) — A;B. We may

further generalize this set-up:

Definition 4.18. Let R be a regular matroid. A shifted matroidal degeneration on R is a
Mumford construction X (d | b, ...,bg) — AF for which the bending locus of b; is a union of
parallel hyperplanes in My whose primitive normal vectors x; € N give an integral realization
of R. We furthermore call a shifted matroidal degeneration transversely shifted if

(1) the hyperplane arrangement {Bend(b;) : ¢ =1,...,k} is transversal, and

(2) the bending parameter of b; along each hyperplane is 1.

We remark that Definition 4.18 is well-defined, independent of the choice of primitive normal
vector x; € IN, which is only unique up to sign. Closely related constructions go by the name
“multiplicative hypertoric variety” in more representation-theoretic literature, see especially |22,
Sec. 8.3] (for the cographic case), generalizing the “additive” case [8, 12, 34]. L)

See the right hand sides of Figures 14, 16 for examples of transversely shifted arrangements.

Notation 4.19. The bending locus Bend(b;) can be viewed as a multiset {Hi(l), e ,Hi(m} of
rational translates of the hyperplane normal to x;—a hyperplane H appears m times in the
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FIGURE 14. Left: 2nd Veronese embedding of the matroidal degeneration of the

theta graph. Right: a shifted version. Grid points are (3Z)2. The integers are

2
the multiplicities of given hyperplane in the arrangement 2.

multiset if the bending parameter of b; along H is m € N. Then, we assemble the hyperplane
arrangement into a single symbol

=Y, H O )

where Hl-(j ) is the set of M-translates of a single hyperplane normal to x;. To indicate the
relation to the regular matroid R, we re-notate the Mumford construction of Definition 4.18, or
the universal version, as

X(R, )~ AF or  X"V(R, ) — AE.

Example 4.20 (Transversely shifted matroidal degeneration for the theta graph). Beginning
with the standard matroidal degeneration X (M*(G)) — A3 associated to the theta graph G
(Example 3.35), take the degree 2 Veronese embedding. The resulting polyhedral decomposition
of T? and bending loci are depicted in the top left of Figure 14. Now consider the shifts of the
families of hyperplanes HY, HS, H§ (of colors red, green, blue, respectively) of the standard
arrangement for M*(G), by (e, €2,€3) = (0,0,5). The result is a transversal arrangement
S = {Hy, Hy, H3} with H, = H{, Hy = HS, Hy = HS + (3,0).

Applying Proposition 3.28, it can be seen that the central fiber of the left-hand Mumford
degeneration in Figure 14 is the union of two copies of P?, both polarized by Op2(2). Similarly,
the central fiber of the righthand Mumford degeneration X (M*(G), #) — A3 is the union
of three surfaces: Two copies of P?, both polarized by Opz(1), and a Cremona surface V :=
Bly, py.ps(P?), polarized by the anticanonical divisor —Ky .

Example 4.21. Consider the regular matroid defined by the matrix

1 0 01
0101
0 011
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FIGURE 15. Dual complex (edges colored) of the righthand shifted arrangement
in Figure 14. It is a tiling of a 2-torus by cubes.

€1 ey

FIGURE 16. Left: Oriented genus 3 graph with spanning tree in red. Right:

Transversely shifted hyperplane arrangement in T3.

It is the cographic matroid of the oriented graph G depicted in the left of Figure 16. Letting
x; € HY(G,Z) for i = 1,2,3,4 be the linear forms corresponding to the four oriented edges of
G, we form a transversely shifted matroidal degeneration X (M*(G),.#) where

o= (1 B, B0, 5P, 5O, 5O, B, 5P, H)
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There are, respectively, 3, 4, 2, 1 hyperplanes perpendicular to x; = (1,0,0), x2 = (0,1,0),
x3 = (0,0,1), x4 = (1,1,1). These hyperplanes are, respectively, depicted in red, blue, green,
and purple in Figure 16.

5. NODAL AND SEMISTABLE MORPHISMS OVER HIGHER-DIMENSIONAL BASES

Definition 5.1. Let Y be a smooth analytic space, and let D C Y be an snc divisor, D = |J, D;.
Let f: X — Y be a morphism of analytic spaces. We say that f is

(1) D-nodal if for every point p € X, there are analytic coordinates in which the morphism
f is of the form
H{xiyi = ul} X Aj+k — HAul X Aj
icl icl
where u; are local equations for some components D; C D, i € I and AJTF — A7 is the
projection to the first j coordinates,
(2) nearly D-nodal if we rather have a normal form of shape
H{x£1)ylgl) L x,f")yz(") = u;} x ATk HAui x AJ,
el iel
(3) D-semistable if we have

H{ajgl) . :Efnl) = u;} x ATTF HAM x A7,

i€l el
In all three cases, if we furthermore have that the irreducible components V; C X; of the generic
fiber of f over each component of D; are smooth, we use the term strict.

This definition works equally well in the algebraic category, replacing A with A and analytic-
local charts with étale-local charts. In the cases where f is D-nodal or D-semistable, the total

space X is smooth, but if some n; > 2 for a nearly D-nodal morphism, then X is singular.

Remark 5.2. The notion of a D-semistable morphism is already known in the literature by the
term semistable morphism, and when context is clear, we also drop the D. By Adiprasito—Liu—
Temkin’s resolution [2] of the conjecture of Abramovich-Karu [1], for every dominant morphism
f: X =Y, there is an alteration Y/ — Y and a modification X’ — X xy Y” of the base change
which is D-semistable, for the discriminant divisor D.

5.1. Mumford degenerations with nodal singularities.

Proposition 5.3. Let f: X(R, ) — AF be a transversely shifted matroidal degeneration.
Then, the morphism f has D-nodal singularities, where D ==V (uy - - -uy) C A¥ is the union of
the coordinate hyperplanes. In particular, X (R, ) is smooth. The same results hold for the
morphism fUY: XWV(R 7)) — JZ;B with D the toroidal boundary. Conversely, any Mumford
degeneration with D-nodal singularities is a transversely shifted matroidal degeneration on some
reqular matroid R.
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Proof. First we prove the forward direction.

Since the action of dM on the universal cover of the Mumford degeneration is free, it suffices
to check the statement on this universal cover. We first show that every cone of the normal fan
to I' is a standard affine cone (i.e. integral-affine equivalent to N¢ for some 7).

The cones of the normal fan are in bijection with the faces of I'. Let F' be a polyhedral face
in the decomposition Ule H; of T9. Then F also defines a face of I" by evaluating (b1, ..., bg)
on F. Conversely, all faces of I" contain such a face in their closure. So it suffices to examine
the normal fan of the faces adjacent to F'.

By the transversality hypothesis, F' is locally described as an intersection (), ; H; for which
x; € N for ¢ € I are linearly independent. Furthermore, the normal vectors x; for ¢ € I generate
a standard affine cone in N, because i — X; is an integral realization of a regular matroid, and
so the sublattice generated by them is saturated.

By hypothesis, the bending parameter of b; is 1 across any hyperplane H; with normal vector
x;. Thus, after an integral change of basis and translation of F' to the origin, b; is locally

expressible as

(28) bi(m) {Xi(m) if x;(m) >0

on Mg for i € I = {1,...,k}, k < g. Combining all the above considerations, we deduce that
the local monoid Mg of the face F' is a product

Mp = [[(Z20)? x [[ Zx []Zs0 ¢ M x ZF ~ z9%*
i€l i € Basis\I E\I

where the first factors, indexed by ¢ € I, correspond to two vectors along the graph of b; in the
two (local) domains of linearity of (28), the second factors go along the face F', and the third
factors, indexed by E'\ I, are “vertical” faces, arising from the fact that we took the overgraph
L(by,...,b)|F + (Z>0)*. Note that the dimensions of the factors add up to the correct value

211+ (g = D)+ (S| = H]) = g + k-

The dual cone to M is isomorphic to (ZZO)‘IHk.

We deduce that the cones of the normal fan are standard affine, and so X is smooth. Fur-
thermore, the morphism to the fan (R>g)* is, on the first factors (z,y) + x +y, on the second
factor is zero, and on the third factor, is an isomorphism to the coordinate axis indexed by the
corresponding element of E \ I. We deduce that the morphism §rp — (Rzo)k is a product of
node smoothings, with a smooth morphism, as in the definition of a D-nodal morphism. The
second statement follows.

We now prove the reverse direction. The condition that X (d | by, ...,bz) — AF have D-nodal
singularities implies that the polyhedral complex Bend(b;) can only have codimension 1 faces.
By convexity, we deduce that Bend(b;) is a disjoint union of parallel hyperplanes H; in TY9. At
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any face F' of Ule Bend(b;) where these hyperplanes intersect, the normal vectors x; to the
hyperplanes must be a subset of a Z-basis of N for the normal fan to be standard affine. It
follows that any linearly independent collection of x; generate a saturated sublattice of N and
so x; define a regular matroid R. Furthermore, the fact that the normal vectors must be linearly
independent proves that the H; define a transversal arrangement.

The same results hold for X"V(R, 7#) — .Z;B, which over the neighborhood (AF)™Y of the
boundary forms a locally trivial deformation of the degeneration X (R, #) — AF. O

Question 5.4. A 1-parameter semistable degeneration f: X — Y which is relatively K-trivial
(i.e. Kx ~y 0)is called a Kulikov model, see Remark 3.5. Proposition 5.3 shows that it is natural
to generalize this notion to a multivariable Kulikov model—a proper, semistable, relatively K-
trivial morphism. It is unclear in what context they are guaranteed to exist. Proposition 5.3
gives nontrivial examples of such, for abelian varieties. Given a family of K-trivial varieties
f: X — Y, is there an alteration of the base Y’ — Y and birational modification f’: X' — Y’
of the base change, which is a multivariable Kulikov model? Do multivariable Kulikov models
exist for families of K3 surfaces?

Proposition 5.5. Suppose that every face F' of a transversal arrangement € is embedded in
T9 (as opposed to immersed) for all subsets I C E. Then, every stratum of X = X(R, ) is
smooth. In particular, f: X — AF is strictly D-nodal. Thus, a transversely shifted matroidal
degeneration is strictly D-nodal if and only if there are least two hyperplanes with normal vector
x; €N foralli=1,...,k.

Proof. 1t follows from the hypothesis and Proposition 3.28 that if the dM-action on the universal
cover X (S8) of the Mumford degeneration identifies two points p,q € X (S) lying on the same
smooth toric stratum, then p,q must lie in a subtorus (C*)¥ being quotiented to an abelian
k-fold. The first part of the proposition follows.

To show the second part: Suppose that there are r; > 2 hyperplanes with normal vector x;.
Let Iy be a subset of a basis, say Iy = {1,...,h} C {1,...,¢} for which the span of x; for
i € I is generated by the x; for i € Iy. Then (¢ 4 H is, combinatorially, a tiling of TY by the
product of a subtorus T9~" C T9 with some polyhedral subdivision of the tiling of T by cubes
of size 1/r1 x -+ x 1/ry. All such cubes are embedded in T" once r; > 2. O

Remark 5.6. Let 57 define a transversal arrangement. Then, any small rational perturbation
of the H € # which keeps the combinatorics of the intersection complex |y, H C TY con-
stant produces an isomorphic degeneration X (R,.7#) — A*, since the normal fan is unchanged
by such a perturbation. Thus, the only difference between these two Mumford constructions is
the choice of polarization on the total space. More generally:

Proposition 5.7. For any arrangement 7, and any sufficiently small perturbation ' of F,
there is a birational morphism X (R, ") — X (R, 7#) over AF.
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Proof. The proposition follows from the fact that the normal fan associated to .#” is a refinement
of that for #—all domains of linearity of the PL function (b1,...,b;): Mg — RF bending
along J# “persist” (up to a small deformation) as domains of linearity for the PL function
(b),...,b,): Mp — R* bending along ##”. Hence, any normal cone to a face of the polytope I'
is a union of normal cones of the corresponding faces of I". O

Corollary 5.8. A small, transversal perturbation " of the hyperplane arrangement (27) defin-
ing the standard matroidal Mumford construction X (R) — AF (Def. /.12) defines a projective
resolution of singularities X (R, #') — X (R), which is D-nodal over AF.

Proof. The corollary follows from Propositions 5.7 and 5.3. ]

5.2. Weight filtration of a semistable morphism. Throughout this section, suppose that
f: X — Y is a (strict) D-semistable, proper morphism, for an snc pair (Y, D), with X Kéhler.
We fix a point 0 € D and denote by D} the open snc stratum containing 0. Assume without
loss of generality that I = {1,...,k}. We also fix a base point ¢t € Y\ D near 0.

Proposition 5.9. Let f: X — Y be a (strict) D-semistable morphism for an snc pair (Y, D)
and let C — (Y, D) be a pointed curve which transversely intersects the open stratum of a
component D; C D. Then the base change X Xy C — C' is a (strict) semistable degeneration.

Proof. This follows immediately from the normal form (3). g

Consider the inclusion of the nearby fiber X; < X s into the restriction of X — Y to a
polydisk A’ 5 0 transversely slicing the snc stratum D¢ > 0. We claim:

Proposition 5.10. There is a deformation-retraction c¢: Xa1 — Xo. The fibers of ¢, = c|x,
@ .. (m))

are real tori; more precisely, if p € Xo lies in a product of snc stratap € [[;c; V(z;”, , T,
cf. (3), then the fiber of ¢ is c; ' (p) = [L;c;(S1)™ ™1 where (SY)"i~1 C X, is the vanishing torus

(1), 0

of the semistable degeneration x; ;= U

It would be natural to call the retraction ¢ the “multivariable Clemens collapse”, in analogy
with the Clemens collapse of a 1-parameter semistable degeneration, as in [19, Thm. 5.7|, [52,
Sec. 2.3|, [53, Prop. C.11].

Proof of Proposition 5.10. Consider first a 1-parameter semistable degeneration over A, as for
the usual Clemens collapse. Near an snc stratum of the fiber, one defines ¢ as the deformation-
retraction of {z()...2(" =4} ¢ A" x A, to {zM) ... 2" = 0} € A" x {0} given by keeping
the arguments of the complex numbers () constant and linearly decreasing the absolute values
|209)| until one of these absolute values equals zero. These local deformation-retractions may
be patched via partitions of unity, cf. [19, p. 236], to give a piecewise smooth retraction of the
total space of the semistable degeneration onto its central fiber.
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The same procedure works in the D-semistable case: We define a deformation-retraction ¢ of
H{xl(l) e xgni) =u;} C A" X H Ay,

onto Hi{xz(l) - xinZ) = 0} € A" x {0} where n = > n;. It is the product of the 1-variable

(4)

retractions, linearly decreasing the absolute values of ;" until one of them equals zero, for each
i. Note that c fibers over the deformation-retraction of the base [[, A, to the origin, which
radially contracts each coordinate u; until it equals zero.

The fiber ¢, 1(p) over the origin p of the given chart is a product of tori—each torus factor
(S1)mi~L is given by

1 7 1/n;
) = = ™ = ()™
Since one linearly decreases the absolute values ]xz(j )| for j = 1,...,n; simultaneously, they all

hit the value zero at the same time. Finally, one patches the local retractions thus defined over

products of snc strata, in a manner similar to [19]. O

Denote the local monodromy operators on (co)homology about the component D; 5 0 by
Ti: HY(Xy,Z) - HY(Xy,Z) or Hy(Xy,Z) — Hy(Xy,Z).

A semistable degeneration over a curve has unipotent monodromy, so by Proposition 5.9, the
T; are commuting unipotent operators. Let

N; =1logT; == (T; — 1) — §(T; — 1d)* + §(T; — 1d)* — - -

be their nilpotent logarithms. Any linear combination N := ) a;N; for a; € N positive integers,
defines the same weight filtration We on HY(X;,Z) or Hy(X},Z) with weights lying between 0
and 2¢, resp. —2q and 0. Here we use that X is Kéhler, so that that W, is the weight filtration
of the limit mixed Hodge structure.

Proposition 5.11. Let X — Y be a strict D-semistable degeneration, X Kdhler, 0 € Y a
point and t € Y a nearby point. There is a canonical specialization map sp: Hy(Xy,Z) —
H,(I'(Xo),Z) for all q. Furthermore, sp is surjective when q¢ = 1.

Proof. Proposition 5.10 produces a map ¢;: X; — Xg. Our goal is now to define a homotopy
equivalence Xy — Xy from a new topological space Xy, that admits a map Xg — I'(Xp), so
that we have the following diagram:

X; = Xo + Xo — I'(Xo);

our map sp will be the composition Hy(Xy,Z) — Hi(Xo,Z) <~ Hy(Xo,Z) — Hi(T'(Xo), Z).
The topological space Xy is built as follows. Let Xy = |JV; be the decomposition of X into

its irreducible components and V denote (an irreducible component of) (.. ; V;. Each stratum

jeJ
V; C Xy is locally a product of snc strata, with local form

ot = =™ =0} € [Tie fal” - 2™ = 0},
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FIGURE 17. Left: The central fiber of a semistable degeneration X — A, XA,
with five components V; C Xp, ¢ = 1,2,3,4,5 of the central fiber, in green.
Double loci extending over V(u;) in red and double loci over V(u2) in orange.
Local equation of the smoothing of the lefthand triple locus Vi45 (in blue) is
My (1) = 4, and local equation of the smoothing of the righthand codi-
mension 2 stratum Vigz4 (in blue) is {z(My() = w1} x {@y?) = 4y}, Right:
Topological space )Afo with double loci Via, Vas, Va4, Vis, V51 replaced with
1—simplex bundles 212, 223, 234, 245, 251 and with ‘/145 and ‘/1234 replaced, re-
spectively, with 2-simplex and (1, 1)-polysimplex (i.e. square) bundles Y145 and
Y1234. The dual complex I'(Xj) is the blue triangle glued to the blue square.

see Definition 5.1(3). Thus, the local dual complex of Xy at any point v € V7 in the open
snc stratum is a product of (n; — 1)-simplices, and these local dual complexes form a product-
of-simplices, i.e. polysimplex bundle ¥; — V;. Since we assume that f: X — Y is strict
D-semistable, the polysimplex bundle ¥ is in fact trivial: ¥; ~pomeo Vi X [[; 0n,—1. We define

5(10 = UJEJ/N

where ~ is the equivalence relation given by the inclusion of ¥ J]VJ, — Yy corresponding to
the face inclusion of the product of simplices [ [ 0y,,—1 corresponding to the inclusion of subsets
J C J'. See Figure 17.

Then )Z'O has a homotopy equivalence to X by decreasing the proportions of the polysimplices
from side length 1 to 0. Furthermore, there is a natural contraction map

J )N(O — F(XQ)

given by collapsing each open snc stratum to a point, which collapses the polysimplex bundle
¥s to a polysimplex [[; o, —1. For instance, in righthand side of Figure 17, the components are
contracted to points, and the interval bundles over double loci are contracted to intervals.

Noting that H,(Xo,Z) ~ Hq()N(o,Z) by the homotopy equivalence Xy — Xy we may then
define sp := iy 0 (¢t)«: Hy(X¢,Z) — Hy(I'(Xo), Z).
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To prove surjectivity of sp when ¢ = 1, let oy € H1(I'(Xg),Z). Then, we may lift o to an
element o € H;(TM(Xy),Z) as the map Hy(I'M(Xy),Z) — H(I'(Xy),Z) is surjective for any
polyhedral complex.

Starting with the vertices v; € o)

, we fix a lift v; € V7 in the open stratum of the corre-
sponding component. For an edge e;; € alll connecting vertices vj and vy, we lift to a path
€5 in Xo connecting v; and v and crossing the open stratum V]‘;, This produces a lift & of

ap to a closed singular 1-chain in Xy. To further lift to H (X}, Z), consider the inverse image
o = ¢ (@n Xp®)

of the intersection of & with the regular locus.

Consider the point p;;; = €55 N Vi where the edge €;; crosses a double locus. There are
two limit points of oy on the circle ¢, l(pjj/). We may connect these limiting points by an arc
of the circle so as to lift the corresponding path €;; into X;. The result is a closed 1-chain in
X whose homology class maps to g under sp. O

Proposition 5.12. Let f: X — Y be a strict D-semistable morphism over an snc pair (Y, D),
X Kihler, and let 0 € Y. We have a canonical isomorphism gryy Hy(Xy, Z) ~ H1(T(Xo),Z).

Proof. By the definition of the integral weight filtration, we have
grtV Hi (X3, Z) = Hy(Xy,7)/ ker(N)

and ker(N) = (), ker(NV;). By the second part of Proposition 5.11, it suffices to prove that
ker(sp) = ker(NN) rationally.

Let A — AF, u i+ (u,...,u) be the diagonal cocharacter. Then the pullback of X — Y
along A is a 1-parameter degeneration Xa = X Xy A — A, whose singularities are analytically
locally of the form
BB T B () S (S B
i.e. a fiber product of snc singularities. By subdividing into lattice simplices the corresponding
dual polysimplex Hle On,—1 to this stratum, we produce a toroidal resolution X, — A which is
a semistable degeneration, and for which I'(X}; ;) ~ I'(Xo) is a subdivision of the dual complex.

In particular, we have a canonical isomorphism H1(I'(XA o), Z) ~ Hi(I'(Xo), Z) and further-
more, the specialization map sp, for the 1-parameter semistable degeneration X\ agrees with
sp under this isomorphism. Thus, it suffices to prove that the kernel of spa: Hy(X¢, Q) —
Hi(D(X ), Q) is W_1 @ Q. The result now follows from [43, Sec. 1, p. 105]. O

Proposition 5.13. Let f: X — Y be a D-nodal degeneration, with 0 € Y andt € Y a nearby
point. Let T;: Hi(Xy,Z) — H1(Xy,Z) be the monodromy about a component D; C D passing
through 0. Then
Ni(z) == > (=735
{5.3"}
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where the indices {7, j'} run through all double loci Vjj over the general point of D;, vy =
[ct_l(pjj/)] and 7;; = [ct_l(ij/)] for any point p;; € Vi, where ¢;: Xy — X is the continuous
map from Proposition 5.10.

Proof. The formula follows from a theorem of Clemens which computes the monodromy of any
semistable degeneration [20, Thm. 4.4]. Though the case at hand is easier, since we only have
simple nodes in the general fiber over D; and the computation is essentially the same as the
Picard-Lefschetz formula. 0

This formula is compatible with the formula r; B; for the monodromy bilinear form of a shifted
matroidal degeneration X (R, .5#) — A¥. Indeed, any double locus Vo of the general fiber over
the i-th coordinate hyperplane of A* has, by construction, vanishing cycle v = Xi € N ~
gr'V, H1 (X, 7). Thus, Proposition 5.13 gives

Bi(z,x) = Y (x-F;)L{x,x;) for x € Hi(Xy,Z),
{5.0"}
where 75 € Hay_1(X;,Z) is defined as above and L is the principal polarization. But for
all {j,7'}, we have (— - 5;;) = L(—,7j;). Thus, Bi(z,x) = r;x? where r; is the number of
hyperplanes normal to x; in the multiset 7.

5.3. Resolution of the base change of a nodal morphism. The goal of this section is to
prove the following general theorem.

Theorem 5.14. Let m: Y — Y be a morphism, and let f': X' — Y’ be the base change of a
strictly D-nodal morphism f: X — 'Y along w. Suppose furthermore that Y' is smooth and the
reduction of E = m~Y(D) is an snc divisor.

Then an ordering of the components of E, and an ordering of the components V; over each D;
determines, in a canonical manner, a relatively projective resolution of singularities X" — X'
for which the morphism f": X" — Y’ is strictly E-semistable, and an intermediate partial
resolution X" — X" — X' for which f": X" — Y’ is strictly nearly E-nodal.

This theorem can be viewed as an explicit special case of the functoriality theorem for mul-
tivariable semistable reductions, see [2, Thm. 4.4]. The proof works by observing that the base
change is locally toroidal. This allows us to apply toroidal resolutions locally, which glue to a
global resolution.

Proof. Define a bijection between the components of E' and the non-negative integers
(29) {1,...,# components of E},

increasing in the total order, so that any snc stratum Ej = [)..; E; defines a unique subset

jeJ
of (29). Suppose that E; is an snc stratum of codimension n in Y”, so that |J| = n. Say J =
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...,n} for indexing convenience. any point in the open snc stratum e hypothesis
1,...,n} for indexing i At any point in the op trat E9, the hypothesi
that £ = 7~ !(D) is snc implies that 7 induces a local monomial transform

u :w71"11,”w;1n —- wm7

(30)

up = wik - wpkn = w'.
where u; are a subset of local coordinates on Y, which cut out the stratum D; = (,c; D; into
which E; maps, and w; cuts out Ej. By the hypothesis that f is D-nodal, the base change f’
has a local form which is the product of a smooth morphism with

(31) {xlylzwﬂ, ,xmym:wﬂ”}r—)(wl,...,wn),

up to relabeling the indices {1,...,m} of the fiber components.

Note that x; and y; are local equations of components of V; C X; over D;. By convention,
take x; to cut out the component earlier in the total order (here we use smoothness of V; to
ensure that x; = y; = 0 is not a self-nodal locus of a component).

We will first construct the partial resolution f”: X” — Y which is nearly F-nodal. The
equations (31) define a morphism of toric varieties. The domain of (31) is described by the

normal fan of a polytope P(71,...,7,), which we define now.
Let bi: R - R/ ~R" for i = 1,..., k be the Z-piecewise linear function
—zr; if 2 <0,
bi(z) =
i(2) { 0 ifz>0,

and let b(z1,...,2,) = Zle bi(z;). Then the graph I'(b) C R¥ x R” is the boundary of the
polytope P(74,...,7) == I'(b) + (R>g)”—the monomials x; and y; respectively correspond to
the primitive integral vectors along the restriction of the graph of b, to the positive- and negative
i-th coordinate axis R C R¥, respectively.

The bending parameter of a piecewise linear function by: R — R’ at z = 2 is defined by
Obg 0bg

P (20 +€) — F2(20 — €) € R, for € < 1. Then the function b;: R — R” above is uniquely

characterized by the following properties:

(1) bi(z) =0 for z > 0,

(2) b; only bends at z =0, and

(3) the bending parameter at z = 0 is 7 = rjjeq + -+ - + rinen, € R7.

Fix a very large integer N > 0. We may uniquely define a (continuous, piecewise linear)

function ¢;: R — R for i = 1,...,m by the following properties:

(1) ¢i(z) =0 for z >0,

(2) c¢i(%) only bends at z = jN + ¢ for j € Jand ¢ € {1,...,r;;} and

(3) the bending parameter at z = jN + £ is the basis vector e; € R”.
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FIGURE 18. Domains of linearity of b and c: R? — R3. The relevant monomial
transform is u; = w%w% and ug = w%wgwg. The bending locus of b is depicted
in solid black, while the bending locus of ¢ is depicted in dotted red, green, and
blue lines. The red, green, and blue lines have bending parameter e, e, and

es, respectively. Here, we took N = 4.

See Figure 18 for a depiction of the domains of linearity in an example, when k = 2. We
define c: R¥ — R’ by the formula c(z1,...,2;) = Zle ¢i(#;). Then since each ¢; is convex,
I'(c) is the boundary of a polytope Q(71,...,7) == I'(c) + (Rxq)”.

Note that the normal fan §; of Q(#,...,7,) depends only on labelling of the indices J =
{1,...,n}. Furthermore, the normal fan of Q(71,...,7,) is a refinement of the normal fan of
P(71,...,7y,) since the linear parts of b;(z) and ¢;(z) are the same for any z < 0 or z > 0,
e.g. z > (# components of E) - N + maxr;; suffices.

Thus, in a neighborhood of a point p € (f/)~!(E;), the normal fan of Q(7, ..., 7,) defines a
toroidal birational morphism XI’D’ — leo' To check that this birational modification is globally
well-defined, it suffices to prove that these birational modifications are compatible with the
incidences F; C Ej for some J' C J, and that they are compatible on overlapping charts over
a given stratum FEj. The latter is automatic since the modification XZ’)’ — lea depended only
on the ordering of J and the snc divisor E has global normal crossings.

To check the compatibility between strata, the restriction of the morphism of fans

sr— HRZ()G}/

jed
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to the coordinate subspace §j — Hj: g Rzoe}/ should be the normal fan of the corresponding
polytope for J'. Dually, in terms of the above defined PL function ¢ = ¢/: R¥ — R7, if we
consider the projection pj j : R’ — R’’, then the composition

RF <2, RY 227, RV’

should agree with the PL function c¢j and indeed it does—this projection simply forgets the
bending (3) along any z; = jN + ¢ for the j € J\ J and any i € {1,...,m}. In Figure 18, this
corresponds to forgetting the colors indexed by J \ J'.

Hence, there is a globally well-defined toroidal birational modification X” — X’ which is
locally defined by the morphism from the normal fan of Q(7i,...,7,) to the normal fan of
P(71,...,7,). It is furthermore relatively projective, since we defined it in terms of polytopes.

We claim that f”: X" — Y’ has nearly E-nodal singularities. We check that f”: X" — Y’
has the desired local form of Definition 5.1(2) by examining a neighborhood of a face of the
polytope Q(71, ..., 7,), i.e. a neighborhood of a domain of linearity of the function c: R¥ — R,
Such a domain of linearity is given by equations

ﬂie]{zi =N +¢;}

for some subset I C {1,...,k} and some indices j; € J. In the neighborhood of such a domain,
the bending parameter of ¢;(z;) is e;, and thus, the local equation of the morphism f” is

T1Y1 = Wiy, - y ImYm = Wy,

where x; and y; are the local equations of the reduced union of components corresponding,
respectively, to the facets of Q(71,...,7y) given by 2z; < j;N + ¢; and z; > j;N + ¢;. Thus, f”
has nearly E-nodal singularities, which are F-nodal if and only if the j; are distinct, ranging
over all possible strata over all E ;.

Thus, we have completed our first goal: producing a birational modification X” — X’ for
which f”: X" — Y is nearly E-nodal. But, as noted before, X” may not be smooth, due to

the presence of the local form

(32) TiY1 = = TmYm = W,

and products thereof. The fan of this local form may be described as follows: Let [0, 1]™ C R™
denote the unit cube and let Cone [0, 1]™ C R™ x R denote the cone over the cube. Then, the
morphism to C,, is given by the morphism of fans Cone[0,1]™ — R>¢ which is projection to
the last coordinate.

We may define a small, regular resolution of (32) by subdividing the fan into standard affine
cones, in a manner which introduces no new rays. Note that the original rays, corresponding
to the components over w = 0, are the cones over the 2™ vertices of the cube. Equivalently,
we must decompose the cube [0,1]" into lattice simplices of minimal volume (1/m!). Such
a subdivision arises from a sequence of toric blow-ups, by blowing up the components of the
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fiber over w = 0 of (32) in any order. Blowing up the component corresponding of a vertex
of the cube [0,1]™ produces a subdivision of the cube which inserts all diagonals of the cube
emanating from that vertex. The resulting polyhedral cells are cones over lower dimensional
cubes. Further blow-ups further subdivide these cones, until all cells are standard simplices.

Thus, to define globally a projective subdivision, requires a total ordering of the components
of f: X" =Y over each component E; C E. Since (32) only involves a single coordinate w, it
suffices to resolve by blowing up, in the specified order, the components over each E; = V (w;).
Then, over a deeper stratum FEj, these blow-ups are a product of blow-ups of the local forms
(32), ranging over j € J. Thus, they induce the product resolution over deeper strata E .

The total ordering of all components V; over D; for all ¢ € I induces a total order on
the components over E;. For instance, the total order on the original components induces a
lexicographical ordering on the components introduced by the partial resolution X” — Y’ over
each F;, which are naturally indexed by the top-dimensional cells of a cuboid whose corners are
the strict transforms of components of the fibers of X’ — Y’ over Ej;, see Figure 18. Blowing
up these components in order, we produce a subdivision for each (singular) stratum over Ej,
giving a projective resolution of singularities X" — X"

Examining the cones of the resulting fan for X", we see that the local form for f"”: X" — Y’
is given by a product of morphisms of fans of the form

H[Cone{OSzl§---§zm§1}—>R20]

(here, we allow m = 1 to include factors which are smoothings of nodes) with a smooth mor-
phism. We deduce that the morphism f”’ is E-semistable. O

Remark 5.15. Suppose 7: Y/ — Y is a birational modification. Consider the strict transforms
E; = 7r*_1DZ~. For any stratum F; C E; contained in the strict transform (i.e. J 3 i), the local
monomial transform (30) is of the form u; = w' where w™ does not involve the variable w; for
all j # i, and w™ = w; - (a monomial in wj for j # i). Thus, in Theorem 5.14, nodes over D; are
in natural bijection with the nodes over E; and indeed, EY — w(E?) C D? is an isomorphism
onto its image, with the restriction of the map X" — X an isomorphism. So, at least over E?,
the morphism f”: X" — Y’ is E-nodal.
More generally, when 7 is an alteration, the nodes over EY are étale over the nodes of Dy.

5.4. Resolution of the base change of a transversely shifted matroidal degenera-
tion. Suppose that X = X (R, ) is a transversely shifted matroidal degeneration, so that,
in particular, X is regular and f: X — A* has D-nodal singularities (Prop. 5.3). Then f is
strictly D-nodal if and only if for each element x; € N of the matroid R, there are at least
two hyperplanes with normal vector x; (Prop. 5.5). In this case, we may directly apply the
resolution algorithm of Theorem 5.14. But in fact, even if an irreducible component over V' (u;)
is self-nodal, the two branches are not permuted by monodromy, because it is possible to choose

globally a normal vector to a hyperplane H € 7. So the resolution algorithm of Theorem 5.14
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FIGURE 19. Left: Bending of by, be, b3 for X (32| b1, ba, b3) a shifted matroidal
degeneration. Right: Bending of ¢1, ¢ for the nearly E-nodal partial resolution
of the base change, in purple, orange, respectively. Grid points are ( 3—122)2. We
have taken N = 4, as in Figure 18.

still works analytically, by consistently choosing one of the two branches and performing the
blow-up in local charts, as in the proof. But, since one does not blow up global Weil divisors,
it is unclear whether the result is, in general, projective.

Example 5.16. Let X (R, ) = X(2 | b1, b2, b3) be the transversely shifted matroidal degen-
eration depicted in the righthand side of Figure 14. Pass to a Veronese embedding for some
large d > 0 (we take 32 times the principal polarization, in the present example).

Consider the monomial base change A? — A3 given by

2 4 3
U = WijwWz, U = Wy, U3 = WIW2.

The pullback and its nearly E-nodal resolution X (32 | ¢1,cz) are depicted in Figure 19, where
E = V(wjws) is the reduced inverse image of D = V (ujugus).

The original red hyperplane in the left of Figure 19 generates hyperplanes to its right, in the
direction of positive intersections with x; = (1,0), the green hyperplane generates hyperplanes
above it, in the direction of positive intersections with xo = (0,1), and the blue hyperplane gen-
erates hyperplanes above and to the left, in the direction of positive intersection with x3 = (1,1).
Purple hyperplanes (corresponding to u;), always precede orange hyperplanes (corresponding
to ug), because of the ordering on the components V' (u1), V(ug) of E.

The righthand figure is then the Mumford construction which describes the nearly F-nodal
partial resolution, as in Theorem 5.14, of the base-changed Mumford construction.
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FI1GURE 20. The two possible small resolutions for a 4-valent intersection point
of 2-dimensional cuboids in Bend(c;). The normal fan is a subdivision of [0, 1]2.

In terms of Mumford constructions, the further small resolution to an E-semistable morphism
is a bit more complicated to describe. Essentially, the relevant blow-ups resolve the 4-valent
intersection points of the (monochromatic) cuboids in Bend(¢;) for i = 1,2, into two 3-valent
intersection points, in a manner which is locally of the form shown in Figure 20.

6. THE SECOND VORONOI FAN AND ALEXEEV’S THEOREM

6.1. The universal family of abelian torsors with theta divisor. One of the most cele-
brated applications of the Mumford construction is the modular compactification of the moduli
space Ay of PPAVs of dimension g, due to Alexeev [4], building on work of Namikawa, Naka-
mura, and Faltings—Chai [47, 48, 49, 50, 17, 7|; see |51, Thm. 9.20].

In previous sections, we have extracted from a section b; € H°(TY9,ZPL/ZL) on a torus
T9 = Mg/M, or its PL lift b;: Mr — R, an integral bilinear form B; € Sym?MVY. Here
we reverse this procedure, extracting from a bilinear form B; a PL function b; with periodic
bending locus. In this manner, we produce both a canonical choice of fan for A, (see Def. 2.24),
and a “tautological” Mumford construction over its cones. The procedure is straightforward: we
graph (a function closely related to) B;(m,m) over the lattice points m € M, take the convex
hull of the corresponding integral points, and take the unique PL function whose graph is the
boundary of this hull.

Definition 6.1. Let B € P, be a positive-definite symmetric bilinear form on Mg. It defines
a square-distance function dg on Mg by = — B(z,z). The Voronoi decomposition Vorp of My
is the one whose maximal open polyhedral cells are defined as follows:

Vorg,m = {z € Mg | dp(z,m) < dg(z,m’) for all m" € M\ m},

ranging over all m € M. That is, the maximal cells are those points closer (with respect to dp)
to one lattice point m € M than any other.

The Delaunay decomposition Delp is the polyhedral decomposition of M whose cells are dual
to the cells of the Voronoi decomposition, and whose vertices are M C Mg.
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FIGURE 21. Voronoi cells for 4x? + 2xy + 3y?. Lattice points m € M in blue.

Example 6.2. Consider the bilinear form B on Mg ~ R? corresponding to the matrix

(1)

from Figure 8 and Example 3.34. The associated square distance function is given by the
quadratic form 4x?+2xy +3y?2. The Voronoi cells are depicted in Figure 21. The corresponding
Delaunay decomposition is depicted in Figure 7.

Remark 6.3. When B is degenerate, the Voronoi cells are still defined, but they are of infinite
volume, as they are invariant under translation by the null subspace of B.

On the one hand, the Voronoi decomposition varies continuously with B € Pg+ , and while
its cells are polytopes, they are not integral. On the other hand, the Delaunay decomposition
has integral polytope cells, which do not vary continuously, but rather are constant along the

relative interiors of the cones of a fan:

Definition 6.4. The second Voronoi fan §vor is the polyhedral decomposition of 73;' whose
cones are the closures of loci on which the Voronoi decomposition is combinatorially constant,
or equivalently, on which the Delaunay decomposition is constant. More precisely, B, B’ € 73;
are in the relative interior 7° of the same cone 7 € Fyor if and only if B and B’ are connected by a
path along which the Delaunay decomposition is constant. The second Voronoi compactification
is the toroidal compactification (see Section 2.5)

—pvor 7&VOI‘
Ag = Ay =A™
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As required by Definition 2.24, Fvor is invariant under the action of A € GL4(Z) on B € 77;
via B — ABAT | as these transformations correspond to changes-of-basis of the lattice M ~ Z9.
It is a theorem due to Voronoi that the number of GLg4(Z)-orbits of cones is finite.

Construction 6.5 (Mumford construction of second Voronoi type). Over each cone B € Fyor
intersecting 73; there is a “tautological” Mumford construction, which we will now define.

Let B; € B be primitive integral vectors generating the rays of B. Then, by considering the
characteristic vector of the bilinear form B; mod 2, it is possible to choose characteristic linear
forms L;: M — Z for which
Bi(m,m) — L;(m)

2
is integer-valued on M ~ Z9. For instance, we may take the coefficients of L; to be the

(33) m — b;(m) =

diagonal entries of the matrix B; in some basis. Then, there is a unique convex section b; €
H°(T9Y,ZPL/ZL) admitting a lift to Mg which agrees with the above function b; on M.

It is a simple verification from Definition 6.1 that |J, Bend(b;) is exactly Dely-,. g, for any
(r1,...,7%) € N¥—this condition translates into a condition that the bending locus of the convex
ZPL function which agrees with m — Zle r;:b;(m) on M is the same for all (ry,...,7;) € NF.
Thus, the b; are dicing. Furthermore, the additional condition of Construction 3.26 is satisfied:
The associated bilinear forms B; span extremal rays of a polyhedral cone in (Ag)trop. Thus, we
get a relatively proper extension of the universal family X"V(b) — .ZE]B. )

Construction 6.6. We now construct a torsor X7 — A, over the universal abelian variety
X, — A, and an extension of it over the second Voronoi compactification.

The issue begins in the interior Ay, see e.g. the discussion in [32, Sec. 1| and [49, Sec. 19
and bottom of p. 209]: For a given abelian variety (A,0, L) with origin 0 € A and principal
polarization L € NS(A), there are 229 different possible (—1)-symmetric lifts £ € Pic(A) of L.
These lifts define naturally a torsor over the 2-torsion subgroup A[2] and thus, on the universal
family X, — A, we have a natural torsor Lifts(L) — A, under the group scheme X,[2] — A,
of relative 2-torsion in X; — A,. But Lifts(L) admits no section—it is impossible to globally
lift L to some (—1)-symmetric £ € Pic(X,/Ay) when g > 2.

There are two ways to resolve the issue: Either one passes to a finite étale cover .Zg — A,
over which this torsor is trivialized, or one defines a new universal family X — A, of abelian
torsors (X, £), with a lift of the principal polarization to a line bundle.

The family X will be, étale-locally over Ay, isomorphic to X; — Ay. Over an étale open
chart U; — Ay over which there is a lift £ of L, we have a family ((Xy)v,, Lu,) — U;. We
may uniquely glue these families over the double overlaps U; N Uj to produce a universal family
(X;, L) — Ag. Notably, the gluing of (X)y, and (X,)y; may not respect the origin sections,
but must respect the lift L.

For a cone B € §Fyor, Construction 6.5 gives a Mumford construction X uni"([b) — jf. In
the category of DM analytic stacks, this family descends as a family of polarized varieties over
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an étale neighborhood of the boundary strata of A]g. The reason is that b; € H°(T9, ZPL/ZL)
which define the relevant polytopal Mumford Construction 3.26 are defined canonically by the
B;—one may worry that some non-canonicity is introduced by the choice of the characteristic
linear form L;(m) in (33) which determine the lifts b;. But a different choice L; — L; + 2L}
produces the same section b;.

On the other hand, due to the shifts L;(m), the resulting Mumford construction has no
canonical origin section, see Remark 3.39. Thus, the output of Construction 6.5 does not glue
canonically (i.e. in a manner independent of the choice of L;) to the universal family X; — A,
(which has an origin section), but rather to the universal family X7 — A, (which has a canonical
lift of the principal polarization). If one were to take L; = 0 in (33), we would retain a canonical
origin point, but the lift b; fails to have integral slopes, leading to non-reduced fibers, see [49].

By their canonicity and the uniqueness of gluings, the Mumford constructions of Construction
6.5 are compatible between adjacencies of cones in §yor. Thus, we may glue them via the unique
gluings respecting the lift of L, to produce a proper extension

7*VOI'

X,

H — VOr
g = X; @] UBG GLg(Z)\Svor Xunlv(b) — Ag .

In summary, ./'\T;VOI admits a relatively projective, surjective morphism (a priori, just in the

category of DM analytic stacks)

—5—vor —-vor
f vor - X; — -Ag >

extending the universal family of abelian torsors with lift of principal polarization. It follows
from Serre’s GAGA for Deligne-Mumford stacks, see [62, Cor. 5.13], that 7;Vor is a DM alge-
braic stack and fyo is projective. For instance, fyor becomes a morphism of projective schemes
after taking the pullback toroidal compactification of an appropriate étale cover.

Our construction also produces an extension

A5>LVOr —=Vvor — VOor
fvort (X7 ,0,7) = A,

of the universal pair (X, ©). Here, the theta divisor © € |L£] is the unique element of the linear
system. Note that © extends as an effective, relatively ample divisor over j;or as the vanishing
locus of the unique weight w = 1 theta function © = V(© /1, o/1)) of Construction 3.21. &

Example 6.7 (Second Voronoi fan for g < 6). We now describe, in varying levels of detail,
the second Voronoi fan of A, for small dimensions, and the extension of the universal family
over it, defined by Construction 6.6. This line of Russian mathematical inquiry is notable for
extending across more than a century.

Here, any fan for A; is the same, and there is only one Voronoi cone, corresponding
to the ray R>o{z?} C 771+ ~ R>q. The corresponding Delaunay decomposition is Figure 4, and
the resulting Mumford construction is the Tate curve. The universal family

X5 5 Spy(Z)\H1 - ~ P(4,6)
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(z+y)*

(z + 2y)?

3z +y)? (z + 3y)*

2z —y)* (@ —2y)*

(x —y)*

FIGURE 22. Projectivization of the second Voronoi fan decomposition of P .
Cones of dimension 3, 2, 1 in green, blue, red, respectively.

is the extension of the universal elliptic curve by a nodal elliptic curve. Over the coarse space
IP’jl- of P(4,6), i.e. the j-line, the nodal curve fibers over j = oo.

Here, the second Voronoi fan is Fvor = GLa(Z) - R>o{x?,y?, (x +y)?}. See Figure
22. Thus, §vor is the orbit of a single cographic cone, associated to the theta graph, with the
lower dimensional faces corresponding to contractions of the theta graph (caveat lector: edge
contractions of G give, in the sense of matroids, deletions of the cographic matroid M*(G)).

There is one orbit each of 3-, 2-, 1-, and 0-dimensional cones, corresponding respectively to
the cographic cones of the theta graph, the wedge of two circles, a single circle, and a point. Over
a maximal, 3-dimensional cone, the universal family A,TQ*VOT — Z;’or is extended by a Mumford
construction X (b) — A3 isomorphic to Example 3.35. The reduction theory, i.e. analysis of
GLgy(Z)-equivalence classes, of positive-definite bilinear forms of rank 2, goes back at least to
work of Fricke-Klein [37]; see Vallentin |64, Ch. 2| for some historical discussion.

Here, the second Voronoi fan is §vor = GL3(Z) - Rx0{x7, (x; —x;)?*} for 1 <i < j < 3.
There is an analogous Voronoi cone in any rank g, called Voronoi’s principal domain of the first

type. It is the graphic cone By, ;) associated to the graphic matroid M (K g+1) of the complete
graph K, on g+ 1 vertices. The number of GL3(Z)-orbits of cones of dimensions 6, 5, 4, 3,
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2, 1, 0 are, respectively, 1, 1, 2, 2, 1, 1, 1. Over the maximal, 6-dimensional cone, the universal
family é’?,)*vor — Z‘éor is extended by a Mumford construction X (b) — AS associated to the
cographic or graphic matroid of the complete graph Ky (note that M(Ky) ~ M*(K,) since Ky
is a planar, self-dual graph). See Example 4.13.

Here, the second Voronoi fan is §vor = GL4(Z)-{Bpiack, Berey; Bwhite }, see for instance
[64, Sec. 4.4.1]. That is, there are three GL4(Z)-orbits of maximal, 10-dimensional cones of §yor.
The original computation goes back to Delaunay [24, Thm. III], who found all but one of the
GL4(Z)-orbits of cones of Fyor, and Shtogrin [59], who filled the gap.

The cone Byjacx is Voronoi’s principal domain of the first type, but unlike for ¢ < 3, it no
longer forms a fundamental domain for the action of GL4(Z). It is a matroidal cone, associated
to the graphic matroid M (K35) of the complete graph K. This cone is not cographic—the dual
of a graphic matroid is graphic if and only if the graph is planar, and K3 is not planar.

The cones Bgrey and Byypite are simplicial, but are not matroidal-—they both have one ray
generated by the positive-definite quadratic form giving the Dy-lattice, whereas all rays of a
matroidal cone are quadratic forms of rank 1. There is one additional maximal, matroidal cone
Base(k; 5) of dimension 9. It is the matroidal cone of the cographic matroid M*(Kj33) of the
complete bipartite graph K33 and is the facet shared between two white cones.

The number of orbits of cones of dimensions 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 are, respectively,
3,4, 7,11, 11, 9, 7, 4, 2, 2, 1, see Hulek-Tommasi [35, p. 232]. In particular, the toroidal
compactification XXOY has 2 boundary divisors and 3 zero-dimensional strata.

Correcting the nearly complete computations of Baranovskii-Ryshkov [56] to find one
missing case, Peter Engel [26] verified by computer that there are 222 maximal, 15-dimensional
Voronoi cones for g = 5. There are 9 rays, giving the boundary divisors of ﬁgor. Dutour Sikirié
et al. [25] proved that there are 110305 total GL5(Z)-orbits of cones in Fvor (loc. cit. give a
slightly smaller number, as they only count cones which intersect Ps).

There are 4 maximal, matroidal cones, of dimensions 15, 12, 12, 10. The first of these is
Voronoi’s principal domain of the first type By (k) and the last of these is the matroidal cone
Bpg,, associated to the Seymour-Bixby matroid, see Example 4.7. The two maximal, matroidal
cones of dimension 12 are the cographic cones of two trivalent genus 5 graphs (one of which is
the 1-skeleton of a cube).

By work of Danilov—Grishukhin [23, Sec. 9], there are 11 maximal matroidal cones,
with 8 cographic of dimension 15, and the remaining three of dimensions 21, 16, 12. Respec-
tively, these are the graphic cone of K7 and two matroidal cones, associated to regular matroids
on 16 and 12 elements which are neither graphic nor cographic. The number of orbits of maximal
cones is unknown, but exceeds 567,613,632 by computations of Baburin—Engel [10].
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Remark 6.8. Construction 6.6 shows that there exists a canonical element of the group
H'(Ay, Xy[2]) giving the abelian torsor XF. We have an isomorphism with the group cohomol-
ogy H'(Ag, Xy[2]) ~ H'(Spyy(Z), (Z/2Z)??) where Spy,(Z) acts on (Z/2Z)*9 by the standard
representation. Furthermore, the class of X is nontrivial for g > 2, cf. [32]. Tt is natural to ask
whether for g > 2 the (étale) Tate-Shafarevich group H*(A,, X,) satisfies H(A,, X,) ~ Z/2Z,
where we view X as a group scheme over A;. An affirmative answer would show that X7 is
the only abelian torsor under the universal abelian variety for g > 2.

The question of whether H'( Ay, X,) ~ Z/2Z is equivalent to the question of whether we
have H'(Spy,(Z), (Z/27)*9) ~ Z/27., as the map

H' (Spay(Z), (Z/22)*) = H' (Ag, Xy[2]) — H'(Ag, Xy)

is an isomorphism. To see this, note first that by [55, Prop. XIIL.2.3], the group H'(Ay, ;)
is torsion. Second, for each n € N, the natural map H'(A,, X,[n]) — H(Ay, X,)[n] is an
isomorphism by the long exact sequence in cohomology arising from the short exact sequence

0 — Xyln] — X, 5 Xy, — 0;

moreover, the group H'(Ag, Xy) = H'(Spy,(Z), Z*9) is 2-torsion, because Spy,(Z) contains an
element that acts as —1 on Z%9.

A computation via the description SLy(Z) = (Z/AZ) %(7,/27) (Z/67Z) shows that H (A1, X1) ~
H'(SLy(Z),(Z/27)?%) is isomorphic to Z/2Z, even though X7 ~ X;. Thus, there exists a
universal non-trivial torsor under X; — A1, i.e. a family of genus one curves over A; with no

section whose Jacobian is X1 — A;. We do not know a geometric construction of this family.

Definition 6.9. Let (X, D) be a pair of a projective variety and a Q-divisor D. We say that
(X, D) is KSBA-stable if:

(1) the pair (X, D) has slc singularities (see e.g. [40]), and

(2) Kx + D is Q-Cartier and ample.

Proposition 6.10. Let € be a sufficiently small positive rational number. Then every fiber of

(Z;VM, 5@;@) — Zgor is a KSBA-stable pair.

Sketch. In any Mumford construction of second Voronoi type, see Construction 6.5, all fibers
have slc singularities, and the canonical bundle Kx ~ Ox is trivial. This follows from a mild
generalization to affine toric bases of Proposition 3.14, by checking that slices S, ., of the
normal fan, for r1 By + - - - + 1y By integral, are integral tilings of Ng. Indeed, S, . ., is, up
to translation, the image of the Voronoi decomposition Vorg under the map Ng: Mr — Ng
corresponding to B = Ele r; B;. A linear algebra computation verifies the integrality.

The log canonical centers of X are exactly the toric strata of the Mumford construction.
Given an effective divisor D C X, there is an € < 1 for which (X, eD) defines a KSBA-stable
pair if and only if D contains no log canonical centers, i.e. toric strata. In fact, in our setting,

any € < 1 suffices, see |3, Thm. 3.10|, generalizing [38, Thm. 17.13].
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We claim this property follows from the definition of © /1, .. o/1)- The key observation is
that, for every vertex of a polyhedral face F' C Delg, B € B°, the restriction © /1, .. o/1)lvy
of the theta divisor to the stratum Yz C X is a section of a (toric) line bundle, for which the
coeflicient of any monomial corresponding a vertex of F' is nonzero, i.e. lies in C*. This property
ensures that the restriction of the theta divisor contains no toric strata of Yg. O

Theorem 6.11 (|4, Thm. 1.2.17]). For e < 1, (Xigvor,e@;m) — Zgor is the universal family
over the normalization of the KSBA compactification of the space of KSBA-stable pairs (X, €O),

with X a torsor under a g-dimensional PPAV and © C X the theta divisor.

Sketch. By Proposition 6.10, there is a classifying morphism c: 74‘;” — j? where the latter is,
by definition, the closure, taken with reduced scheme structure, of the space of pairs (X, €©) as
in Construction 6.6, in the separated DM stack of KSBA-stable pairs [39, 3, 40]. By Zariski’s
main theorem and the normality of toroidal compactifications, it suffices to check that ¢ is finite.

It is easy to see that ¢ defines a morphism over the Baily—Borel compactification ZgBB, e.g. by
considering the Albanese variety of the normalization of any component of (X,e®). So if ¢
contracted some curve, this curve would lie in a fiber of the morphism Z;for — Z?B. Any such
curve admits an algebraic deformation to a union of 1-dimensional torus orbits—first move the
image point in ZQBB to the deepest cusp, then apply the torus action. Thus, ¢ would contract
some 1-dimensional toric boundary stratum (P!,0,00) — Zgor. But, for any cone B € §yor, the
combinatorial types of the KSBA-stable fibers over 0 and over v € A* C P! are distinct, by
Construction 6.5. It follows that ¢ contracts no algebraic curves, and hence is finite. 0

A similar strategy was employed in [6, Thm. 1, Thm. 5.14] to prove the semitoroidality of
certain KSBA compactifications of the moduli of polarized K3 surfaces.

6.2. Algebraicity and projectivity. We now analyze under what circumstances an extension
of the universal family X; — A, or Xg* — Ay of principally polarized abelian varieties or torsors,
by Mumford constructions, are either algebraic or projective.

Proposition 6.12. Let B C 73; be a rational polyhedral cone and S be a fan satisfying the
hypotheses of Construction 3.11. The corresponding Mumford construction f: X"V(S) — .Z;B
is a proper, flat morphism of algebraic spaces.

Suppose, furthermore, that f: X"V(b) — ./T;B s a polytopal Mumford construction, as in

Construction 3.26. Then f is étale-locally projective.

Proof. By replacing jg with a suitable further cover, we may assume that the distinction
between & and X; is erased. Let § be a common refinement of the fans I' - B and §vor whose
support is I" - B, for I' € GL4(Z) the Levi quotient. Then we have morphisms

1B 15 Avor
A — AJ = A
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and we may pullback the (a priori) analytic family X"V (S) — .Z;B and the algebraic universal
family j;or — Zgor to produce two families X"V/(S) and XV — jg& in the analytic and
algebraic categories, respectively.

Taking a common refinement of the fans defining X™¥/(S) and X' we may dominate
X"i¥/(8) and X¥°' by a common (universal) Mumford construction X — .,Zg . Since X —
X"iv/(8) and X — XV are both toroidal morphisms, we can connect XV --» X"i¥/(8) by
a sequence of toric modifications, all of which are algebraic. We deduce that X"¥/(S) is an
algebraic space. In turn, its contraction X"V(S) is a proper algebraic space over .Z;B.

Finally, we address the case of a polytopal Mumford construction f: X"V (b) — .Z;B. Then f
is analytically-locally projective over .Z;B because f is a descent of f,: XV (b) — T'(B), which
is relatively projective over the maximal open subset T'(B) discussed at the end of Construction
3.11, and the map T'(B) — .,Z}]B along which f, descends to f is an étale surjection. The second
statement of the proposition is a consequence of the following general fact: If a separated and
finitely presented morphism of algebraic spaces X — Y is analytically-locally projective, then
it is étale-locally projective.

The proof follows from Artin approximation. Indeed, the Hilbert scheme Hilbx/y is an
algebraic space locally of finite presentation over Y by [61, Tag 0D01]. Take a point p € Y.
An analytic family of ample divisors Dy C Xy — U over an analytic neighborhood U 3 p,
may be approximated by an algebraic family of ample divisors, Dy, C Xy — U’ over an étale
neighborhood U’ > p, which coincides with the restriction of Dy to p. Possibly replacing U’
with a smaller, Zariski open neighborhood of p € U’, the divisor Dy, is relatively ample. O

We now consider the much subtler question of when X"V(b) is projective over JZ;B, as
opposed to étale-locally projective.

Definition 6.13. Let b, ' € H(T9, JZPL/1ZL). We say that b ~ V' lie in the same shift class
if b — ¥ lifts to an M-periodic section b — b’ : Mg — R of éZPL.

Recall that dM ~ Z9 = H,(T9,Z) in Construction 3.38, while M ~ (1Z)9. A necessary, but
in general insufficient, condition for b ~ ¥’ is that they define the same monodromy bilinear
form B via formula (24).

Example 6.14. Let g = 1 and consider b, ¥/, b” for which Bend(b) = 2[Y], Bend(¥') = [3] +
(4], and Bend (V") = [3] + [2] as Z-weighted linear combinations of %-integral codimension 1
polytopes, see Definition 3.17. All three define the same monodromy bilinear form B = 2z2.
But we have b ~ b’ and b £ b. See Figure 23. The fundamental issue is that, while we could
subtract from b — b’ a linear function of slope % to make it periodic, such a function is not a

section of %ZL on Mg ~ R, see Definition 3.25, because it does not have integral slope.

Proposition 6.15. Let f: X"V(b) — JZ;B and f': X"WV(b') — /T;B be two universal poly-
topal Mumford Constructions 3.26, for lifts of two cones b,b’ C H%T%éZPL/%ZL) into
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NN\

FIGURE 23. Left: lift of section b — b’ with bending [J] — [1]. Right: lift of
section b — b” with bending 2[J] — [3] — [2].

H°(Mg, éZPL), mapping to the same monodromy cone B C Sym>MY. Suppose, that for any
B € B, the PL lifts b,b': Mg — R satisfy the property that b/ — b is M-periodic. Then, the
canonical analytic polarization on the Mumford construction extends as a relatively ample global
section of the relative Picard Pichniv(b)/gg if and only if the same holds for X“m"(ﬂo')/jf.

We note that the data of the gluing of the Mumford construction onto the universal family
Xy — A, requires the data of lifts of b, b’ into PL functions on Mg by Remark 3.39.

Proof. Let £ and L' be the defining relatively ample line bundles of the two Mumford construc-
tions over the analytic tubular neighborhood T'(B) C Y (B) of the deepest toric stratum.

Take a M-periodic, regular refinement S of the normal fans for b, b/, and let XV (S) —
T(B) be the corresponding fan Construction 3.11. Let Ls and L’ be the pullbacks of £ and
L' to X'WiV(S), and define £ := L ® L'gl. Finally, let &, Ls, E’S be the pullbacks of £, Ls,
Ll to the universal cover of X2V(S). Then &, Ls, [I’S are M-equivariant line bundles. The
condition that & — b is M-periodic implies that we have an M-equivariant isomorphism

g’: O( Z anD’Ui)7

rays
RZOU@'GS

with a,, € Z depending only on the M-equivalence class 7; of the ray R>gv; € S. Quotienting,
we deduce that the line bundle £ is represented by a finite Z-linear sum » | ag, Dy, of components
over the boundary of X V(S). As components over the boundary, Dy, descend to algebraic
divisors on the algebraic space X"V(S) — .Z;B and thus Ls and L differ by twisting by a
linear combination of vertical divisors, over the boundary of .Z;B. So one extends as a section
of relative Picard if and only if the other does. Furthermore, the relative ampleness of £ and
L' over the interior ./Tg are equivalent. On the other hand, the relative ampleness of either over
the boundary /T;B \ .Zg is automatic, by construction. O

Proposition 6.16. Let f: X"V (b) — ,Z;B be a universal polytopal Mumford construction
associatfd to a lift of b C HO(TY, (%ZPL/%ZL), extending (as an algebraic space) the universal
family X, — Ay of abelian varieties. Then f is a projective morphism, whenever b;(m)—b;(—m)

is M-periodic. Similarly, there is a relatively projective extension f: X™V*(b) — ./Zlvg of the
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unwversal family f; — .Zg of abelian torsors when b ~ b¥" lie in the same shift class, for any

B € B, and for b¥°" defined as in (33).

Proof. To prove the extension result for /'Fg, we follow the proof strategy of Proposition 6.15: We
may pass to a smooth (—1)-symmetric common refinement X "V(S) — T(B) of the Mumford
constructions for b;(m) and b;(—m). The pulled back line bundles Lg, L) associated to b;(m),
bi(—m) are interchanged by the (—1)-involution: (—1)*Ls ~ L. If bj(m) — b;(—m) is M-
periodic, we may conclude that L5 ~ Ls(>" ay,Dy,) differ by twisting by vertical divisors. It
follows that (L£s5)®? defines an algebraic extension of (£ fq)®d where £ % € Pic %A, (.Zg) is a
tensor square of a (—1)-symmetric local lift of the principal polarization.

The case of extending /'?g* is similar, but again Proposition 6.15 does not directly apply,
since we are gluing onto the universal abelian torsor. The extension of /'?g* by the Mumford
construction of second Voronoi type (Construction 6.6) is relatively projective. Replacing B with
a common refinement of B and §yor, we may assume that B is contained in a second Voronoi
cone. Choosing lifts b¥°" as in (33), defines a local analytic section of Xig*vor near the boundary
stratum associated to a second Voronoi cone. The hypothesis that b ~ V", for all B € B and
argument of Proposition 6.15 show that, with respect to the chosen local origin section of /'E; ,
and a well chosen lift of b, there is a gluing X™V*(b) — JZ;B% of X"WV(b) — T(B) and /'?g* — Xg
for which the ample line bundle on the former extends to a section in Pic Xunive (1) /A3 (.Z;R ).

Thus, in either case 2?9 or .)?;, the canonical polarization on the Mumford construction
extends to a relatively ample section of relative Picard over j}?.

After passing to some further tensor power, we may lift to an element & of the (algebraic)
Picard group of X"V (b) or X"V*(b), which is relatively very ample. Pushing forward, we get
a vector bundle f.€ over ﬂgg over the étale site, and therefore over the Zariski site. It follows
that the projectivization of (f.£)" is relatively projective over .Z;B. Thus, X"V (b) or X"™iv*(b)

admit closed, algebraic embeddings into a projective space over .,Z;B . The result follows. ]

Projectivity criteria for extensions of é’?g should be compared to [17, Ch. VI|. Following
a standard toric construction, the polytope I" of Section 3.3 defines a convex PL function
$#: S — R on the normal fan S of Section 3.1. The function ¢ should be an “admissible
homogeneous principal polarization function” as in [17, Ch. VI, Def. 1.5], with our conditions
on the shift class of b; related to Def. 1.5.(vi) of loc.cit. Our projectivity results should then
follow from [17, Ch. VI, Thm. 1.13|, though translating between the language used here and

that in loc.cit. is somewhat involved.

Corollary 6.17. Suppose that F is a hyperplane arrangement for the reqular matroid R, for
which the parallel hyperplanes normal to T; are HZ-(] = T;(m) € € + Z. Then the extension

univ 7B
X"YHR, H) — Agh
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of .f; — .Zg is projective whenever Zj € =0€ Q/Z for alli=1,...,k and the extension
XUN(R, ) = Ag"
ofX — .Ag is projective whenever ) (€;; + 1) =0€Q/Z foralli=1,...,k.

Proof. Let r; be the number of hyperplanes H l-(j ) € 2 normal to ;.

For Br € Svor @ matroidal cone, the Delaunay decomposition as in Construction 6.5 is the
unshifted hyperplane arrangement (27). Thus, it follows from Proposition 6.16 that ¢ defines
a projective extension of X = A whenever the section b; € H°(TY, éZPL, éZL) bending along

i]) := {Z;(m) € ¢;; + Z} lies in the same shift class as b; € H°(T9, 1ZPL, 1ZL) which bends

r; times along the unshifted hyperplane #;(m) € 0 + Z. Equivalently,

(34) Jo Jo-(=rido + 325 b)) dy e € Z

where J,, denotes the Dirac delta function at p. Now (35) holds if and only if 25;1 €ij € Z.
For the case of extending X; — A, projectively, we observe that an arrangement which bends

r; times along the half-shifted hyperplane Z;(m) € % + Z satisfies the hypotheses of Proposition

6.16 by lifting to a %ZPL function b, which is identically zero in a neighborhood of the origin

of Mg. So b defines a relatively projective extension of the universal family fg — .Zg. Then

by Proposition 6.15, it suffices to understand when E; ~ b; lie in the same shift class, i.e.

1 rx i
(35) Jo fof(—riéé + ijl Oc;;) dy dx € Z.
This holds exactly when Y70 (€;; + e O

7. PROOF OF THEOREM 1.1

Our goal is to prove Theorem 1.1, and leverage Proposition 6.12 to prove more algebraic
formulations of the results therein, see Theorem 7.1 and Corollary 7.2 below.

Proof of Theorem 1.1. Let f*: X* — (A*)F be a family of PPAVs which is matroidal with
respect to the snc extension (A*)* < AF (Def. 4.9). Then there are integers r; > 0 for which

the monodromy bilinear forms about {u; = 0} are r; B; where B; = XZ2

is an integral generator
of the matroidal cone Bg of the corresponding regular matroid R. Constructions 4.16 and 3.26,

see also Notation 4.19, give a universal Mumford degeneration
funiV: XuniV(E’ %) N AV;BE

on a transversely shifted hyperplane arrangement for the associated regular matroid R, which
has exactly r; bending loci in TY, with bending parameter 1, along hyperplanes normal to x;.
The monodromies about the boundary divisors of ./Igﬁ are exactly r; B; and by Proposition
2.27, the classifying morphism (A*)* — A, will (lift and) extend to AF — .Z;B% £ Pulling
back X"™V(R, #) along the extension of the classifying morphism to A* produces the desired
extension f: X — A¥. It has smooth total space and nodal singularities, because f™V is



78 ENGEL, DE GAAY FORTMAN, AND SCHREIEDER

locally trivial along the deepest toroidal stratum of JI;B % and so smoothness, resp. nodality, of
XUV resp. fUMVY (see Proposition 5.3), implies smoothness, resp. nodality, of the restrictions
X, resp. f, to the transversal slice A* to this deepest toroidal stratum.

The condition that f: X — AF be strictly nodal follows from the condition r; > 2 by
Proposition 5.5.

Finally, we address the K-triviality of X. It suffices, by Proposition 3.14, to show that
the slice S(;,. 1) of the normal fan has integral vertices. Indeed, this holds for any shifted
matroidal degeneration, as each top-dimensional cell in S 1) is a Minkowski sum of seg-
ments Y ;s [0,%;] C Nr corresponding to hyperplanes H; € ¢ meeting at the dual vertex
v € (Ve I, H; of the arrangement in Mg/M. (For a transversely shifted arrangement, these
Minkowski sums are integral-affine unit cubes). We deduce the first part of Theorem 1.1.

The second part of Theorem 1.1 follows from the existence of algebraic, transversely shifted
matroidal degenerations with specified monodromies, see Corollary 7.2 below. ]

Theorem 7.1. Let f*: X* — Y™ be a projective family of PPAVs over a base Y* =Y \ D for
D CY an snc divisor in a smooth quasiprojective variety Y. Let 0 € D and assume the local
monodromy bilinear forms B; about the components D; 5 0 are Tixg for an integral realization
i x; € MY of a reqular matroid R, where M ~ grgVHl (X4, Z) fort near 0. Up to passing to
an étale neighborhood of 0 € Y, there is a flat, projective, D-nodal, relatively K -trivial extension
f: X =Y, which is furthermore strictly D-nodal when all r; > 2.

Proof. We have a classifying map Y* — A, and by the hypothesis on monodromy, we have,
étale-locally about 0 € Y, an extension and lift Y — .Z;BE, Br :=R>o{Bi,..., By}, e.g. because
this lift exists analytically-locally about 0 € Y (cf. Prop. 2.27). The morphism ¥ — JZ;B s
algebraic, for instance by Borel algebraicity. Pulling back the family X" (R, .#) — .Z;,B £
which is algebraic and étale-locally projective by Proposition 6.12, we deduce the result (the
nodality and relative K-triviality of the extension follow as in the proof above). O

Corollary 7.2. Let R be a regular matroid of rank g on a k element set and let (rq,...,ry) € NF,
There exists a projective morphism f: X — Y of smooth quasiprojective varieties, k = dimY,
g+ k =dim X, an snc divisor D C Y, and a zero-dimensional stratum 0 € D, satisfying the

following conditions:

(1) The monodromies about the components D; > 0 of D are of the form B; = TiX% and
generate the matroidal cone Br (Defs. 2.6, 4.6).

(2) The morphism f: X — Y is a transversely shifted matroidal degeneration on the matroid
R near0 €Y (Def. 4.18), and the restriction of f to Y* := Y \D is a family of principally
polarized abelian varieties of dimension g.

(8) The morphism f is, up to shrinking Y, a D-nodal morphism, which is furthermore
strictly D-nodal if r; > 2 for alli=1,...,k (Def. 5.1).
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Proof. By Proposition 4.10, there is a smooth quasiprojective variety Y, snc divisor D C Y,
zero-stratum 0 € D, and family f*: X* — Y™ of PPAVs over Y* =Y \ D, whose monodromies
about the components D; 3 0 are given by 7;x?. Applying Theorem 7.1 and passing to an étale
chart about 0, we produce a projective extension f: X — Y with the desired properties. ([l
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