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Abstract. We survey the Mumford construction of degenerating abelian varieties, with a
focus on the analytic version of the construction, and its relation to toric geometry. Moreover,
we study the geometry and Hodge theory of multivariable degenerations of abelian varieties as-
sociated to regular matroids, and extend some fundamental results of Clemens on 1-parameter
semistable degenerations to the multivariable setting.
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1. Introduction

In 1972, Mumford gave an analytic construction of degenerations of abelian varieties over
complete rings [44]. It played an important role in the development of the theory of toric
varieties [36] and toroidal compactifications of locally symmetric varieties [9]. When working
over C, the basic idea is that one may view a degeneration of abelian varieties analytically, as
the quotient of an appropriate intermediate cover of the universal cover.

It is well-known that, over the complex numbers, any abelian g-fold A ≃ Cg/H1(A,Z) is the
quotient of a vector space Cg by a lattice H1(A,Z) ⊂ Cg of rank 2g. Suppose that A = Xt is
a general fiber of a degenerating family X → ∆ of abelian varieties over the unit disk ∆ ⊂ C.
Let VZ := H1(Xt,Z). Then, there is a saturated sublattice W−1VZ ⊂ VZ of the fundamental
group VZ = π1(Xt), consisting of 1-cycles which are invariant under the monodromy of the
punctured family X∗ → ∆∗. It contains a further sublattice W−2VZ ⊂ W−1VZ consisting of
vanishing cycles; that is, the 1-cycles on Xt which are null-homologous in X. The filtration
W−2VZ ⊂W−1VZ ⊂W0VZ = VZ defines the weight filtration.

The subgroup W−1VZ ⊂ VZ = π1(Xt) gives rise to a cover Y ∗ → X∗ corresponding fiberwise
to the intermediate cover Cg ≃ X̃t → Yt → Xt of the universal cover, whose Galois group over
Xt is the graded piece grW0 VZ. In general, Yt is a semiabelian variety—an algebraic torus bundle
over an abelian variety of dimension 1

2rank grW−1VZ. When W−1VZ has rank g, then we have
Yt ≃ Cg/Zg ≃ (C∗)g, and we call the degeneration maximal.

In the case of a maximal degeneration, the intermediate cover Y ∗ of the punctured family
admits an analytic open embedding Y ∗ ↪→ (C∗)g × C∗ into an algebraic torus, with the map
to ∆∗ given by the projection to the second factor. Thus, by the theory of toric varieties, it is
possible to extend Y ∗ → ∆∗ to a family Y → ∆. More precisely, we take a toric extension of
(C∗)g × C∗ for which the fiber-preserving action of grW0 VZ extends to an action on the central
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fiber Y0. The quotient of Y → ∆ by the extended action of grW0 VZ produces a new model of
the degeneration with particularly nice properties, e.g. toroidal singularities.

The original paper [44] performs this construction more generally over any complete ring, cor-
responding to a possibly higher-dimensional base, and using formal algebraic geometry. Mum-
ford’s work was inspired by an influential 1959 manuscript of Tate [60] on degenerating elliptic
curves. In the late 1970’s, Nakamura and Namikawa worked out the theory in the complex-
analytic setting [47, 48, 49, 50, 51], culminating in a method of patching together Mumford
constructions over the cones of the second Voronoi fan, to produce a relatively proper, analytic
extension of the universal abelian variety Xg → Ag to a toroidal compactification of Ag.

An impressive, and notoriously technical, further advancement was the work of Faltings–Chai
[17] in the early 1990’s, who extended the Mumford construction and the theory of toroidal com-
pactifications to the arithmetic setting. In the later 1990’s, Alexeev–Nakamura [7] and Alexeev
[4] used the Mumford construction to compactify the universal abelian torsor (X ⋆

g ,Θg) with
theta divisor, cf. Construction 6.6, and provide a modular interpretation of this compactifica-
tion, as the normalization of the closure of the space of KSBA-stable pairs (X, ϵΘ) in the proper
DM stack of log general type varieties.

1.1. Contents. The goal of this paper is to provide a “working mathematician’s guide” to the
Mumford construction. Thus, we usually work analytically over C, though we do also touch on
the question of algebraicity of Mumford constructions (Prop. 6.12). Furthermore, we largely
restrict our attention to maximal degenerations, though most of the results presented here apply
in the non-maximal case. Many of the ideas of the paper are to be found scattered through the
literature; some are difficult to find, and others appear to be new, such as Theorem 1.1.

After reviewing in Section 2 preliminary material on principally polarized abelian varieties,
their Hodge theory, their moduli, their degenerations, and toroidal extensions and compactifi-
cations of Ag, we dive into the main constructions in Section 3:

Mumford constructions and examples. Using tools from toric geometry, we construct maximal
degenerations of principally polarized abelian g-folds. The constructions are presented in in-
creasing levels of generality and are broadly divided into two classes: fan constructions and
polytope constructions (see Section 1.2 for a list). The fan construction only produces a degen-
eration complex-analytically, but has the advantage of being relatively simpler, and having more
readable geometry. The advantage of the polytope construction is that it outputs a relatively
projective degeneration.

The equality of the two constructions is examined in Section 3.4, while the topology is
discussed in Section 3.2, where we analyze the weight filtration on the limiting mixed Hodge
structure of a general fiber. We also study the effect, on Mumford constructions, of a toroidal
base change and of replacing the polarization by a multiple, see Section 3.6.
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Regular matroids. We continue in Section 4 with a more detailed analysis of Mumford construc-
tions associated to regular matroids (Constr. 4.16). A matroid R is a collection of subsets of
a finite set E, encoding the notion of linear independence, of a set of vectors in a vector space
(Def. 4.1). An embedding E ↪→ Fn into a vector space over a field F, realizing this collection
of independent sets, is a realization of R. Matroids which admit a realization over any field are
regular (Def. 4.2), though F2 and F3 suffice.

Associated to a regular matroid R are the so-called matroidal, shifted matroidal, and trans-
versely shifted matroidal Mumford constructions, see Sections 4.2 and 4.3. Related degenerations
were explored for cographic matroids by Dancso–McBreen–Shende [22, Sec. 8.3], building on
unpublished work of Hausel–Proudfoot. Perhaps unsurprisingly, regular matroids are intimately
connected to the total space of a Mumford construction being regular, i.e. smooth. In fact, a
Mumford construction X → ∆k such that (i) X is regular, and (ii) over each coordinate hyper-
plane {ui = 0}, i = 1, . . . , k, of the polydisk, the vanishing cycles span a 1-dimensional space, is
necessarily a transversely shifted matroidal degeneration, and vice versa (Props. 5.3 and 5.13).

As we explain in Section 2.3, for a family f∗ : X∗ → (∆∗)k of g-dimensional PPAVs, the
monodromy about the i-th coordinate hyperplane defines, via the principal polarization, a sym-
metric matrix Bi ∈ Symg×g(Z) (Def. 2.6). The cone in Symg×g(R) generated by {B1, . . . , Bk} is
the monodromy cone of the family f∗ (Def. 2.7). Such a cone is matroidal if it is induced by an
integral realization of a regular matroid (Def. 4.6). Transversely shifted matroidal degenerations
are examples; they are of particular importance to our companion paper [27].

Theorem 1.1. Let f∗ : X∗ → (∆∗)k be a smooth family of PPAVs of dimension g, whose
monodromy cone is matroidal (Defs. 2.7, 4.6). There is a flat, K-trivial extension f : X → ∆k

which is a nodal morphism (Def. 5.1), and f may be assumed strictly nodal if the monodromy
about each coordinate hyperplane is imprimitive.

Moreover, given k generators of a matroidal cone, there exists a family f∗ : X∗ → (∆∗)k of
PPAVs whose monodromies are the specified generators, and an extension as above, which is
the restriction of a projective family over a quasiprojective variety Y to a polydisk ∆k ⊂ Y .

See Theorem 7.1 and Corollary 7.2, respectively, for more algebraic formulations of the first
and second statements of the above theorem.

As a particular application, the relative intermediate Jacobian fibration IJY ◦ → (∆∗)10 of
the punctured universal deformation Y ◦ → (∆∗)10 of the Segre cubic Y0 (Ex. 2.16) admits such
a filling IJY → ∆10 ≃ DefY0 as does the relative Jacobian fibration of the universal deformation
of a nodal curve C0 (Exs. 2.15, 4.13). The respective matroids are the Seymour–Bixby matroid
R10 and the cographic matroid M∗(G) of the dual graph G = Γ(C0) of C0 (Exs. 4.7, 4.3).

Nodal and semistable morphisms. Our investigations connect in a very natural way to the
notion of a semistable morphism f : X → Y , introduced by Abramovich–Karu [1] and the
more restrictive notion of a nodal morphism (Def. 5.1). The former are morphisms between
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smooth spaces X and Y , which are étale or analytically-locally a product of snc degenerations
x(1) · · ·x(m) = u, and the latter (nodal morphisms) additionally satisfy m ≤ 2. The main result
of Adiprasito–Liu–Temkin [2] is that, for any dominant morphism f : X → Y , there is a regular
alteration Y ′ → Y of the base and a birational modification of the base change X ′ → X ×Y Y ′

so that f ′ : X ′ → Y ′ is semistable. Furthermore, once semistability is achieved, further base
changes admit a functorial semistable resolution.

Once we have proven that transversely shifted matroidal degenerations are nodal morphisms,
we continue with a general analysis of the Hodge theory of semistable morphisms, in Section 5.
We define a multi-parameter analogue (Prop. 5.10) of the Clemens retraction for 1-parameter
semistable degenerations, and investigate the relationship (Prop. 5.11) between the dual complex
of the central fiber, and the graded piece grW0 VZ of the weight filtration on VZ = H1(Xt,Z).

In Section 5.3, we instantiate explicitly the functorial resolution of [2, Thm. 4.4], in the case
of a base change of a nodal morphism (Thm. 5.14). We apply this resolution algorithm to
transversely shifted matroidal degenerations in Section 5.4. Refinements of these results will
play an important role in [27, Sec. 3 and 4].

The second Voronoi fan and Alexeev’s theorem. Finally, we review the work of Alexeev, Naka-
mura, Namikawa and Faltings–Chai on the extension of the universal family Xg → Ag over the
toroidal compactification Avor

g associated to a distinguished fan Fvor (Defs. 6.1, 6.4), whose
support is the cone P+

g of positive semi-definite g × g matrices with rational null space.
We sketch a proof of Alexeev’s theorem that Avor

g is the normalization of the KSBA com-
pactification of the moduli space of abelian torsors with theta divisor (X, ϵΘ), paying particular
attention to the subtle differences between Alexeev’s universal family X ⋆

g → Ag and the univer-
sal family of abelian varieties Xg → Ag (Constr. 6.6 and Rem. 6.8).

We also provide a brief review of the extensive literature on the cones of the second Voronoi
fan, for g ≤ 6 (Ex. 6.7).

1.2. Index of constructions. The various forms of the Mumford construction presented in
this paper are thus:

(3.3): Via fans, over a 1-parameter base (i.e., a disk), and over a family of 1-parameter bases,
complete with respect to a fixed monodromy operator T : H1(Xt,Z) → H1(Xt,Z), en-
coded by a symmetric bilinear form B ∈ Sym2(grW0 VZ)

∨.

(3.8): Via fans, over a polydisk ∆k, and over a family of such polydisks, complete with respect
to a fixed collection of monodromy bilinear forms Bi ∈ Sym2(grW0 VZ)

∨, i = 1, . . . , k.

(3.11): Via fans, over the toroidal extension Ag ↪→ AB
g associated to a rational polyhedral cone

B = R≥0{B1, . . . , Bk} ⊂ P+
g .

(3.21): Via polytopes, over a polydisk ∆k, associated to a collection {b1, . . . , bk} of convex
piecewise linear functions Rg → R with appropriate Zg-periodicity, and over a family of
polydisks, complete with respect to the associated monodromy cone B.
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(3.26): Via polytopes, over the toroidal extension Ag ↪→ AB
g associated to a rational polyhedral

cone B = R≥0{B1, . . . , Bk} ⊂ P+
g .

(3.38): Via polytopes, as in (3.21), but where only d times the principal polarization extends
to a relatively ample line bundle on the family.

(4.16): As special cases of (3.21) and (3.38), associated to a regular matroid R of rank g, and a
hyperplane arrangement inducing this regular matroid from the set of normal vectors.

(6.5): Associated to a “tautological” version of (3.26) for a cone B ∈ Fvor of the second Voronoi
fan, giving a local analytic extension of the universal family of abelian varieties.

(6.6): As in (6.5), but giving an extension X ⋆
g
vor → Avor

g of the universal family of abelian
torsors with theta divisor.

An extensive collection of examples (Exs. 3.31, 3.34, 3.35, 3.40, 4.13, 4.14, 4.20, 4.21, 5.16,
6.7), with figures, is also provided in the text, see especially Section 3.5. The first of these
(Ex. 3.31) is the prerequisite ur-example of the Mumford construction: the Tate curve, i.e. the
extension of the family C∗/uZ → ∆∗

u of elliptic curves by an irreducible nodal curve.

1.3. Acknowledgements. We thank Valery Alexeev, Younghan Bae, and Mikro Mauri for
useful discussions.

PE was partially supported by NSF grant DMS-2401104. OdGF and StS have received
funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme under grant agreement No 948066 (ERC-StG RationAlgic).
OdGF has also received funding from the ERC Consolidator Grant FourSurf No 101087365. The
research was partly conducted in the framework of the DFG-funded research training group RTG
2965: From Geometry to Numbers.

2. Preliminary material

2.1. Algebraic and analytic stacks. By a DM algebraic stack, or simply DM stack, we will
mean a separated Deligne–Mumford stack of finite type over C. Similarly, a DM analytic stack
will be a separated Deligne–Mumford analytic stack X in the sense of [62, Def. 5.2]. Thus, X is
a stack on the site of complex analytic spaces such that the diagonal is representable and finite
and there exists an analytic space Y and a surjective étale morphism Y → X. It follows that
X is locally modeled as a finite quotient of an analytic space, see [62, Prop. 5.4], and that the
analytification of a DM algebraic stack is a DM analytic stack, see [62, Lem. 5.5].

2.2. Principally polarized abelian varieties. Let Ag denote the DM stack of principally
polarized abelian varieties (PPAVs) of dimension g, over C. Since a PPAV X is uniquely
determined by its polarized weight −1 Hodge structure on H1(X,Z), the period map defines
an isomorphism Ag ≃ Sp2g(Z)\Hg to an arithmetic quotient of a Hermitian symmetric domain
of Type III. We review this construction now.
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Definition 2.1. A Z-polarized Hodge structure (VZ, H
•,•, L) of weight k is a Z-module VZ

together with an integral, non-degenerate, (−1)k-symmetric bilinear form L : VZ⊗VZ → Z, and
a Hodge decomposition

VC := VZ ⊗ C =
⊕

p+q=k

Hp,q

satisfying the following conditions:

(1) Hq,p = Hp,q for all p+ q = k,
(2) L(Hp,q, Hp′,q′) = 0 unless p = q′, q = p′,
(3) (−1)k(k−1)/2ip−qL(v̄, v) > 0 for all 0 ̸= v ∈ Hp,q.

Definition 2.2. A Z-polarized Hodge structure (VZ, H
•,•, L) is principally polarized if the pair-

ing L is unimodular.

Let (VZ, L) be a unimodular symplectic lattice, and consider the Lagrangian Grassmannian
LGr(VC, L). It is the projective flag variety of isotropic g-dimensional subspaces of VC. The
polarized weight −1 Hodge structures on (VZ, L) with a Hodge decomposition of the form
VC = H−1,0 ⊕H0,−1 define an analytic open subset of LGr(VC, L), given by

{H−1,0 ⊂ VC : L|H−1,0 = 0 and iL(v̄, v) > 0 for 0 ̸= v ∈ H−1,0}.(1)

Given [H−1,0] in (1), we may define a complex torus

X := VC/(VZ +H−1,0).

We have canonical isomorphisms H1(X,Z) ≃ VZ and H1(X,Z) ≃ V ∨
Z . Thus, the symplectic

form L ∈ V ∨
Z ∧ V ∨

Z defines an element

L ∈ ∧2H1(X,Z) ≃ H2(X,Z).

The condition that H−1,0 is Lagrangian for L amounts to the property that L ∈ H1,1(X) is a
Hodge class. Hence L determines a holomorphic line bundle L → X, unique up to translation
by Pic0(X). Finally, the condition iL(v̄, v) > 0 ensures that any lift L is ample, and so in fact,
X is an abelian variety (i.e. projective).

Choosing a standard symplectic basis of VZ produces an isometry (VZ, L) ≃ (Z2g, ·), where
Z2g is generated by vectors ei, fi for i = 1, . . . , g and the unimodular symplectic form · satisfies
ei · ej = fi · fj = 0 and ei · fj = δij .

Definition 2.3. The Siegel upper half-space Hg is the space of symmetric g × g matrices with
positive-definite imaginary part.

A choice of symplectic basis of (VZ, L) identifies (1) with Hg. In a standard symplectic basis,
the Lagrangian H−1,0 ⊂ VZ ⊗ C is the span of the columns of some 2g × g period matrix(

σ

I

)
∈ Mat2g×g(C),
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which we write in 2 × 1 block form. The condition that L ∈ H1,1(X) is Hodge amounts to
the symmetry of σ, while the positivity condition iL(v̄, v) > 0 amounts to the fact that the
imaginary part Im(σ) > 0 is positive-definite. Hence σ ∈ Hg. Changes of symplectic basis,
i.e. elements of Sp2g(Z), act on the left, by 2× 2 block matrices,(

A B

C D

)(
σ

I

)
=

(
Aσ +B

Cσ +D

)
.

Renormalizing the generators of our Lagrangian subspace to be dual to the ei with respect to the
symplectic form corresponds to right multiplication by (Cσ +D)−1. So we get the Lagrangian
corresponding to (Aσ +B)(Cσ +D)−1 ∈ Hg, which is the standard action of Sp2g(Z) on Hg.

Definition 2.4. The pair (X,L) is called a principally polarized abelian variety, or PPAV.

For any representative L ∈ Pic(X) of L, we have h0(X,L) = 1, and so there is a unique
divisor Θ ∈ |L| called the theta divisor.

It follows from the above discussion that the moduli stack of PPAVs (X,L) is given by the
orbifold (i.e. smooth DM analytic stack) Ag ≃ Sp2g(Z)\Hg. Furthermore, the universal family
Xg → Ag of PPAVs is uniformized by Cg ×Hg and can be presented as a quotient, too:

Xg ≃
(
Z2g ⋊ Sp2g(Z)

)
\ (Cg ×Hg) .

2.3. Degenerations of PPAVs. In the following sections, we discuss the monodromy of de-
generations of PPAVs, especially in relation to toroidal extensions of Ag. See [15] for reference.

Let f : (X,L) → ∆k be a degeneration of PPAVs of dimension g over a polydisk ∆k with
coordinates u1, . . . , uk, such that the discriminant locus is the union of the coordinate hyper-
planes V (ui) = {ui = 0}, for i = 1, . . . , k. Fix a base point t ∈ (∆∗)k and let VZ := H1(Xt,Z).
Suppose that the monodromy transformation Ti : VZ → VZ associated to the simple, oriented
loop γi ∈ π1((∆

∗)k, t) ≃ Zk is unipotent—for instance, by a result of Clemens [19, Thm. 7.36],
this holds if the general fiber over V (ui) has reduced normal crossings.

Choosing a symplectic basis (VZ, L) ≃ (Z2g, ·), we may view Ti as acting on the reference
lattice Z2g. Let Ni = log(Ti) = Ti − I be its logarithm, where I denotes the identity matrix of
size 2g × 2g. Note that N2

i = 0 and Ni ◦Nj = Nj ◦Ni commute. Let N =
∑k

i=1 riNi, ri ∈ N,
be any strictly positive linear combination. Then N is the monodromy of the restriction of f to
the cocharacter ∆→ ∆k defined by u 7→ (ur1 , . . . , urk). By [16, Thm. 3.3], all (r1, . . . , rk) ∈ Nk

define the same increasing weight filtration

W−2 := (imN)sat

W−1 := kerN

W0 := VZ.

More generally, for any (r1, . . . , rk) ∈ (Z≥0)
k, the filtration so defined depends only on the

polyhedral face of (R≥0)
k containing N .
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The above weight filtration may also be described as follows:

W−2 =
(∑k

i=1 imNi

)sat
and W−1 =

⋂k
i=1 ker(Ni).(2)

Indeed, by the saturatedness of the above filtration, it suffices to prove this for rational, and,
in fact, for real coefficients. The inclusions im(

∑
Ni) ⊂

∑
imNi and

⋂
ker(Ni) ⊂ ker(

∑
Ni)

are clear. To prove the converse, let (r1, . . . , rk) ∈ (R>0)
k and note that im(

∑
riNi) and

ker(
∑

riNi) do not depend on the choice of ri > 0, see [16, Thm. 3.3]. The inclusions in
question thus follow from a limit argument where rj = 1 and ri → 0 for i ̸= j, applied to
im(
∑

riNi) ⊂ im(
∑

Ni) and ker(
∑

Ni) ⊂ ker(
∑

riNi).

Definition 2.5. Consider the standard Lagrangian subspace Ze1 ⊕ · · · ⊕ Zeg ⊂ (Z2g, ·). Its
stabilizer is the parabolic group

PZ :=

{(
A B

0 A−T

)
∈ Sp2g(Z)

}
with A ∈ GLg(Z) and BAT = ABT . We define the unipotent subgroup of PZ to be

UZ :=

{(
I B

0 I

)
: B ∈ Symg×g(Z)

}
and the Levi quotient to be PZ/UZ ≃ GLg(Z), which can also be lifted into Sp2g(Z) as the block
diagonal matrices (i.e. matrices with B = 0 in PZ).

The collection of commuting unipotent matrices Ti ∈ Sp2g(Z) can be simultaneously con-
jugated into the unipotent subgroup UZ as they fix a coisotropic space (given by W−1) and
hence fix a Lagrangian subspace. Thus, choosing a basis appropriately, we may assume that
the monodromies Ti are all of the form

Ti =

(
I Bi

0 I

)
(3)

for symmetric matrices Bi.

Definition 2.6. Let f : (X,L)→ ∆k be a degeneration of PPAVs with unipotent monodromies
about the coordinate hyperplanes. We define the monodromy bilinear forms Bi ∈ Sym2(grW0 VZ)

∨

for i = 1, . . . , k by the formula

Bi(x, y) = L(Nix, y).(4)

Observe that Bi depends only on the punctured family f∗ : (X∗, L∗) → (∆∗)k and so the
definition extends naturally to families of PPAVs over the punctured polydisk.

This provides a coordinate-free definition of the matrices Bi from above. Implicit in the
above definition is the claim that Ni contains W−1VZ in its kernel, which follows from (2).
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Definition 2.7. Choose a symplectic basis of VZ such that Ti has the form (3) for each i, which
identifies each Bi with a symmetric matrix Bi ∈ Symg×g(Z). The span

Bf := R≥0{B1, . . . , Bk} ⊂ Symg×g(R)

is the monodromy cone associated to the degeneration f : (X,L)→ ∆k. This definition extends
to any family of g-dimensional PPAVs f∗ : (X∗, L∗)→ (∆∗)k with unipotent monodromy.

Note that the collection (Bi)i=1,...,k of monodromy matrices, and hence the monodromy cone
Bf , is unique, up to the simultaneous action of A ∈ GLg(Z) by Bi 7→ ABiA

T . This action
corresponds to the conjugation action Ti 7→MTiM

−1 of PZ ⊂ Sp2g(Z), M ∈ PZ, which descends
to the Levi quotient PZ/UZ ≃ GLg(Z) because UZ is commutative.

The symplectic basis of VZ determines a lift of the classifying map Φ: (∆∗)k → Ag to
a holomorphic period map Φ̃ : Hk → Hg, where Hk → (∆∗)k is the universal cover, H :=

{τ ∈ C | Im(τ) > 0}. Take coordinates (τ1, . . . , τk) ∈ Hk, with the universal covering map given
by ui = exp(2πiτi). This lifted map satisfies the equivariance property

Φ̃(τ1, . . . , τi + 1, . . . , τk) = Ti · Φ̃(τ1, . . . , τk) = Φ̃(τ1, . . . , τk) +Bi

corresponding to the deck transformation for the generator γi ∈ π1((∆
∗)k, t).

Definition 2.8. Define a holomorphic map to the flag variety D∨ := LGr(VZ ⊗ C, L) by

Ψ̃ : Hm → D∨

τ 7→ Φ̃(τ)− (τ1B1 + · · ·+ τkBk)

and denote by Ψ: (∆∗)k → D∨ its descent to (∆∗)k.

Note that Ψ̃ descends because the −(τ1B1 + · · ·+ τkBk) term cancels the equivariance of Φ̃,
and so makes the map invariant under the action of Zk. We now recall Schmid’s multivariable
nilpotent orbit theorem [57, Thm. 4.12], applied to our setting:

Theorem 2.9. Ψ extends to a holomorphic map ∆k → D∨. Let Ψ(0) denote the extension to
the origin, and consider Φ̃nilp(τ) := Ψ(0) + (τ1B1 + · · ·+ τkBk). Then

(1) Φ̃nilp(τ) ∈ Hg ⊂ D∨ for all sufficiently large Im τi and
(2) the distance d(Φ̃(τ), Φ̃nilp(τ)) decays exponentially in Im τi.

Here distance is measured in the natural left Sp2g(R)-invariant metric on Hg.

Definition 2.10. Let Pg := {B ∈ Symg×g(R) : B > 0} be the cone of positive-definite matrices
and let P+

g be its rational closure, consisting of all positive semi-definite matrices whose kernel
is a rational subspace of Rg.

There is a natural stratification

P+
g = Pg ⊔

⊔
V1
Pg−1 ⊔

⊔
V2
Pg−2 ⊔ · · · ⊔ P0
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where the Vi ⊂ Zg range over all primitive integral sublattices of Zg of codimension i, and the
relevant copy of Pg−i is the cone of positive-definite bilinear forms on Rg/(Vi ⊗R). See Figure
22 to visualize the projectivization of P+

2 , which is a cusped hyperbolic disk.
It follows from item (1) of Theorem 2.9 that:

Corollary 2.11. The monodromy cone Bf is contained in the rational closure P+
g of the

positive-definite g × g matrices, uniquely up to the action of GLg(Z).

We have that W⊥
−2 = W−1 where the perpendicular is taken with respect to L. Thus L

descends to a unimodular symplectic form on W−1/W−2. In fact, by [57, Thm. 6.16], we have
the following fundamental theorem on the existence of the limit MHS:

Theorem 2.12. The tuple (VZ, L,Ψ(0),W•) defines a graded-polarized Z-mixed Hodge struc-
ture, the limit mixed Hodge structure. In particular, the filtration of W−1/W−2⊗C induced by
the Lagrangian subspace Ψ(0) defines a pure, principally polarized Hodge structure of weight −1
on W−1/W−2 ≃ (Z2h, ·). Here h is the rank of the null space of a general element of Bf .

Definition 2.13. We say that f : X → ∆k is maximally degenerate if Bf ∩ Pg ̸= ∅, i.e. the
general element of Bf is positive-definite. Equivalently, W−2 = W−1, i.e. h = 0.

Definition 2.14. We define the tropical moduli space of abelian varieties to be

(Ag)trop := GLg(Z)\P+
g

where the action is via B 7→ ABAT .

We can view (Ag)trop as the tropical moduli space of abelian varieties, because, as we will see
in Section 2.5, a fan defining a toroidal extension of Ag lives naturally in (Ag)trop. But more
deeply, (Ag)trop (or at least, the image of Pg in it) is itself a moduli space of “tropical abelian
varieties” [42, 18, 14]: It parametrizes isometry classes of full rank lattices in Rg, where the
action of GLg(Z) serves the role of forgetting the basis of the lattice in which the Gram matrix
of the corresponding real intersection form has been expanded.

Then Bf defines, canonically, an immersed polyhedral cone in (Ag)trop.

Example 2.15 (Degenerations of Jacobians). Let π : C → ∆k be a family of nodal curves,
which is smooth over the complement of the coordinate hyperplanes V (u1 · · ·uk).

Let {pij} denote the nodes of the general fiber over V (ui). The local equation of the smoothing
of the node pij is given by xijyij = u

rij
i for some positive integer rij . It follows from the

Picard-Lefschetz formula that the logarithm of monodromy on VZ = H1(Ct,Z) about the i-th
coordinate hyperplane is given by

Ni : x 7→ −
∑

j rij(x · γij)γij(5)

where γij ∈ H1(Ct,Z) is (either orientation of) the vanishing cycle of the node pij and · is the
intersection form on VZ. Observe that the total space C is smooth if and only if all rij = 1 and
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no node of C0 is the specialization of a node over both V (ui) and V (uj) for i ̸= j. Taking the
relative Jacobian fibration

Jπ◦ : JC◦ → (∆∗)k

of the smooth family, the monodromy is given by the same formula, since H1(JCu,Z) ≃
H1(Cu,Z) for u ∈ (∆∗)k. The weight filtration is

W−2 = Z-span{γij} and W−1 = (W−2)
⊥.

Computing the monodromy bilinear forms on grW0 VZ we get

Bi(x, y) := Ni(x) · y =
∑

j rij(x · γij)(y · γij).

Suppose now that π : C → ∆k ⊂ Def(C0) is a slice of the universal deformation of C0 which is
transversal to the equisingular/locally trivial deformations. Then there is only one node over
each V (ui), the corresponding integer ri = 1, and k is the number of nodes of C0. Thus,

Bi(x, x) = (γi · x)2 ∈ Sym2(grW0 VZ)
∨

is a rank 1 quadratic form, given by the square of the linear form which is pairing with the
vanishing cycle γi ∈ grW−2VZ.

We have canonical isomorphisms

grW0 VZ ≃ H1(Γ(C0),Z),

grW−2VZ ≃ H1(Γ(C0),Z),

where Γ(C0) is the dual graph of the central fiber; indeed, by duality it suffices to prove the
first isomorphism, which follows e.g. from Proposition 5.12 below. The space W−2VZ = grW−2VZ

is generated by the vanishing cycles γi which are in bijection with the edges of Γ(C0). The
relations between the vanishing cycles γi are given by the boundaries of the subsurfaces they
bound. In terms of graphs, these are the coboundaries of the vertices of Γ(C0), so that

grW−2VZ ≃ coker(C0(Γ(C0),Z)
∂−→ C1(Γ(C0),Z)) =: H1(Γ(C0),Z).

In turn, H1(Γ(C0),Z) ≃ grW0 VZ with the quadratic form Bi = (γi · x)2 evaluating on a 1-cycle∑
ciei ∈ H1(Γ(C0),Z) to the square c2i of the coefficient of the edge i in it. See Figure 1.
It follows from the Mayer–Vietoris sequence that grW−1VZ ≃ H1(C

ν
0 ,Z) where Cν

0 → C0 is the
normalization, with its natural polarized Z-Hodge structure.

Example 2.16 (Degenerations of intermediate Jacobians). This example is due to Gwena
[33]. Let Y0 be the unique cubic threefold with 10 isolated A1 singularities, the Segre cubic.
Concretely, it is defined by the equations

Y0 :=
{∑5

i=0 xi =
∑5

i=0 x
3
i = 0

}
⊂ P5
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Figure 1. Nearby fiber Ct to the universal deformation π : C → ∆3 of a nodal
genus 2 curve C0 with three nodes. Vanishing cycles {γ1, γ2, γ3} ∈ grW−2VZ shown
in red, and dual graph Γ(C0) of the central fiber, shown in blue.

with the 10 singularities given by the S6-orbit of the point [1 : 1 : 1 : −1 : −1 : −1] ∈ P5. Then,
the universal deformation (whose existence follows from [29, Cor. 4.2], for example)

π : Y → DefY0 ≃ ∆10

of Y0 is a degeneration of smooth cubic threefolds, whose discriminant locus is the union of
the 10 coordinate hyperplanes V (u1 · · ·u10) ⊂ ∆10. Similar to the universal deformation of
a nodal curve, if we label the nodes of Y0 and coordinate hyperplanes appropriately, then
V (ui) ≃ ∆9 ⊂ ∆10 is exactly the locus where the i-th node is not smoothed.

We now define the intermediate Jacobian fibration

IJπ◦ : IJY ◦ → (∆∗)10.

The rank 10, polarized, unimodular Z-local system VZ := (R3π◦
∗Z(1))∨ underlies a variation of

Hodge structure of weight −1 and type (−1, 0), (0,−1). It is polarized by the negation of the
intersection form on H3(Yu,Z) for u ∈ (∆∗)10. Then, we define IJY ◦ := VC/(F0 + VZ).

Let pi ∈ Yi be the unique node on the general fiber of Yi → V (ui). Then associated to pi is
the cycle of a vanishing 3-sphere γi ∈ VZ = H3(Yt,Z(−1)). With an appropriate labeling and
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orientations, the 10 cycles γi satisfy the following collection of linear relations

γ6 = γ5 − γ1 + γ2

γ7 = γ1 − γ2 + γ3

γ8 = γ2 − γ3 + γ4

γ9 = γ3 − γ4 + γ5

γ10 = γ4 − γ5 + γ1,

(6)

see [33, Sec. 7.1.10], and generate a primitive integral Lagrangian subspace W−2 ⊂ H3(Yt,Z(−1))
of rank 5. The Dehn twist about the three-sphere γi gives the formula

Ni : x 7→ −(x · γi)γi

for the logarithm of monodromy about the i-th coordinate axis. By the same computation as
Example 2.15, the monodromy bilinear forms on grW0 VZ satisfy Bi(x, x) = (γi · x)2. As we
will see in Remark 4.8 in Section 4.1, there is no graph G for which the γi correspond to the
edges of G and such that the relations (6) between the γi are given by the image of the map
C0(Γ(G),Z)→ C1(Γ(G),Z) defined by some choice of orientation, cf. Example 2.15.

We will give explicit extensions of the families Jπ◦ and IJπ◦ over ∆k and ∆10 in Examples
4.13, 4.14 and in Construction 4.16.

2.4. Toric varieties. We recall here some of the basic theory of toric varieties. We refer to
[30, 21] for the standard notions.

Toric geometry will be used both to extend Ag toroidally (Section 2.5), and to build Mumford
degenerations (Section 3). We employ the standard toric notations of N ≃ Zg for a free abelian
group of rank g and M := Hom(N,Z), for constructions concerning the abelian and degenerate
abelian fibers. These lattices play, respectively, the roles of the cocharacter and the character
lattices in toric geometry. Thus, fans lie in N while polytopes lie in M.

Definition 2.17. A fan F in N is a set of strongly convex, rational polyhedral cones τ ⊂ NR

for which every face of a cone is a cone, and the intersection of two cones is a face of each.

We do not impose the hypothesis that fans have finitely many cones, and indeed almost none
of the fans in this paper satisfy this hypothesis. For each cone τ ∈ F in a fan, we may consider
the C-algebra C[τ∨ ∩M] associated to the commutative semi-group τ∨ ∩M, where τ∨ ⊂MR

is the collection of all linear functionals evaluating non-negatively on τ ⊂ NR. We form the
corresponding affine toric variety

Y (τ) := SpecC[τ∨ ∩M].(7)

Then the gluing Y (F) :=
⋃

τ∈F Y (τ) of these affine schemes along the natural open immersions
corresponding face inclusions gives the toric variety Y (F), see [30, Sec. 1.4].
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Notation 2.18. If F is a polyhedral fan, we notate its toric variety by Y (F).

For all constructions in this paper, Y (F) will be an analytic space (and even a C-scheme)
which is locally of finite type.

As in the usual theory of toric varieties, the torus orbits of dimension d in Y (F), isomorphic
necessarily to (C∗)d, correspond bijectively to cones of codimension d in F, see [30, Sec. 3.1].

Definition 2.19. A polytope H is a convex set in MR defined by the intersection of a (possibly
infinite) number of closed rational half-spaces, such that H is locally of finite type, i.e. locally
about every point p ∈ H, it is defined by a finite number of half-spaces.

Definition 2.20. A face F ⊂ H of a polytope is a non-empty intersection of H with a (pos-
sibly empty) collection of supporting hyperplanes, and the local monoid MF of this face is the
intersection of the lattice M with the finitely many (possibly empty) closed half-spaces which
define H in the neighborhood of a general point of F , translated to the origin.

The normal fan of H is the fan formed from the dual cones of the local monoids MF ranging
over all faces F ⊂ H (including the open face H).

The toric variety Y = YH associated to the polytope H is the union of SpecC[MF ] ranging
over all faces, see also [30, Sec. 1.5]. If, furthermore, all faces of H are integral polytopes, then
there is a canonically defined torus-equivariant holomorphic line bundle L on Y , given by gluing
together line bundles on each affine chart SpecC[MF ], in a manner which locally agrees with
the recipe in [30, Sec. 3].

Remark 2.21. When the polytope H is compact, we may construct Y = YH directly as the
projective variety YH = ProjC[Cone(H) ∩ (M × Z)], where Cone(H) is the cone over H, put
at height 1 in MR × {1} ⊂ MR × R; the above line bundle is L = OY (1). The lattice points
m ∈ H ∩M define a basis of torus-equivariant sections of H0(Y,O(1)). More generally, lattice
points (m, w) ∈ Cone(H) ∩ (M × {w}) of height w correspond to torus-equivariant sections
θm/w ∈ H0(Y,O(w)). The multiplication map

H0(Y,O(w1))⊗H0(Y,O(w2))→ H0(Y,O(w1 + w2))

corresponds to ((m, w1), (m
′, w2)) 7→ (m+m′, w1 +w2), which we may equivalently write as a

multiplication rule θm/w1
· θm′/w2

= θ(m+m′)/(w1+w2), cf. (19) below.

Suppose now that there is a subgroup A ⊂ GL(M)⋉M of the integral-affine group (possibly
infinite), acting on the polytope H. Then there is a natural action of A on Y , which in a basis
M ≃ Zg acts on the open torus orbit N⊗ C∗ ≃ (C∗)g by the map

ci 7→ cai11 · · · c
aig
g

where (aij)1≤i,j≤g ∈ GLg(Z) is the linear part of A in the chosen basis. Moreover, there is
a linearization of L = OY (1) with respect to the A-action on Y , which acts on sections by
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a · (zm) = za·m. The A-action is properly discontinuous on a tubular neighborhood of all toric
strata corresponding to faces F , or cones τ ∈ F, whose A-stabilizer has finite order.

Definition 2.22. A fan F is regular if every cone τ ∈ F is standard affine; that is, the primitive
integral generators of the extremal rays of τ form a subset of a basis of N.

Equivalently, if F is a normal fan, the polytope H should be Delzant. The toric variety
YH = Y (F) is a smooth analytic space if and only if F is regular, in which case for each τ ∈ F,
the affine toric variety Y (τ), see (7), is isomorphic to a product of an affine space with a torus.

Definition 2.23. The support (in NR) of a fan F is the union of all cones τ ∈ F.

Finally, a morphism of fans F → G is a linear map between the corresponding cocharacter
lattices, which sends cones into cones. It induces a torus-equivariant map Y (F)→ Y (G).

2.5. Toroidal extensions. We now outline the construction of toroidal extensions of Ag as-
sociated to a monodromy cone Bf and more generally a fan F. See [51, 9, 45, 17] for references
on toroidal compactifications of Siegel spaces.

Definition 2.24. A fan F for Ag is a rational polyhedral decomposition whose support is
contained in P+

g , for which F is GLg(Z)-invariant under the action B 7→ ABAT , with finitely
many orbits of cones.

Example 2.25. Let f : X → ∆k be an abelian fibration with unipotent monodromies about
the coordinate hyperplanes. Then Ff := GLg(Z) · Bf defines a fan, when Bf injects into
(Ag)trop = GLg(Z)\P+

g .

Let B be a polyhedral cone which embeds into (Ag)trop. In what follows, we will consider the
fan F = GLg(Z) · B. Consider the coordinate-wise exponential mapping:

E : Symg×g(C)→ Symg×g(C∗)

(σij)
g
i,j=1 7→ (exp(2πiσij))

g
i,j=1.

The map E is the quotient by the action of translation by UZ ≃ Symg×g(Z), so E defines an
open embedding of the quotient of Siegel space (Def. 2.3) into a torus

E : UZ\Hg ↪→ UZ\Symg×g(C) ≃ Symg×g(C∗) ≃ Symg×g(Z)⊗ C∗ ≃ UZ ⊗ C∗.

Here UZ ⊂ PZ is the unipotent radical of the parabolic, as in Definition 2.5, and the isomorphism
Symg×g(Z) ⊗ C∗ ≃ Symg×g(C∗) is given by (nij)1≤i,j≤g ⊗ λ = (λnij )1≤i,j≤g. This is called the
first or unipotent partial quotient of Hg in the theory of toroidal compactifications.

Compose the period maps Φ̃ and Φ̃nilp of any degeneration with Bf = B with the quotient map
Hg → Symg×g(Z)\Hg. They descend to single-valued maps Φ,Φnilp : (∆

∗)k → Symg×g(Z)\Hg.

Composing Φnilp with the map E gives rise to a map

(∆∗)k → Symg×g(Z)⊗ C∗ ≃ Symg×g(C∗)(8)
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whose image is (an analytic open subset of) a translate of the subtorus ⟨B⟩ ⊗ C∗ where ⟨B⟩ :=
(RB) ∩ Symg×g(Z). Thus, Theorem 2.9 can be rephrased as saying that the period mapping is
approximated by a translate of a subtorus, near 0 ∈ ∆k.

Since the fan F = GLg(Z) · B sits in the co-character lattice Symg×g(Z), the associated toric
variety Y (F) is a toroidal extension of Symg×g(C∗). Consider the quotient GLg(Z)\Y (F). This
quotient is not globally well-behaved, e.g. the action of GLg(Z) fixes the origin point of the open
torus orbit. But there is a tubular analytic neighborhood T (F) ⊂ Y (F) of the union of the toric
boundary strata of Y (F) corresponding to cones intersecting Pg on which the GLg(Z)-action is
properly discontinuous. Let T ∗(F) be the intersection of T (F) with the open torus orbit UZ⊗C∗.
Then, we have open embeddings

GLg(Z)\T (F)←↩ GLg(Z)\T ∗(F) ↪→ PZ\Hg.(9)

By [11, Thm. 4.9(iv)], the boundary of Sp2g(Z)\Hg is locally modeled near the Baily-Borel cusp
(associated to the Lagrangian subspace Ze1 ⊕ · · · ⊕Zeg) by PZ\Hg. Thus, by (9), we may glue
GLg(Z)\T (F) to Ag = Sp2g(Z)\Hg along their common analytic open subset GLg(Z)\T ∗(F).

More generally, the same construction applies to any GLg(Z)-invariant fan F, and the result-
ing toroidal extension is relatively proper over the 0-dimensional cusp of the Baily-Borel [11]
compactification ABB

g = Ag ⊔ Ag−1 ⊔ · · · ⊔ A1 ⊔ A0 if and only if Supp(F) = P+
g .

When F contains cones supported in P+
g \Pg, the gluing defined by (9) further extends along

the intermediate-dimensional strata of the Baily-Borel compactification. This is the toroidal
extension Ag ↪→ AF

g of the orbifold Ag.

When Supp(F) = P+
g , we notate the toroidal extension by Ag ↪→ AF

g ; it is proper, and we

call it a toroidal compactification. It follows from [9, Thm. 5.2] that AF
g or AF

g is a DM algebraic
stack, in the former case by refining and extending F to a fan with full support P+

g .

Notation 2.26. For simplicity, we will write Ag ↪→ AB
g to notate the toroidal extension asso-

ciated to the fan F = GLg(Z) · B consisting of the orbit of a polyhedral cone B ⊂ P+
g .

Proposition 2.27. For any degeneration of PPAVs f∗ : X∗ → (∆∗)k with monodromy cone B,
the period map (∆∗)k → Ag admits a unique holomorphic extension ∆k → AB

g .

Proof. The proposition follows from Theorem 2.9: We have shown that the nilpotent orbit
Φnilp maps, analytically-locally near the boundary of Ag, into the translate of the subtorus
⟨B⟩ ⊗ C∗ ⊂ Symg×g(C∗), see (8). Any cocharacter B ⊗ (C \ 0) ⊂ ⟨B⟩ ⊗ C∗, for B ∈ B, admits
a completion over 0 ∈ C to the toroidal extension AB

g , sending 0 into the toroidal boundary
stratum corresponding to the cone of F containing B in its relative interior. We deduce that
Φnilp : (∆

∗)k → Ag extends holomorphically to a map ∆k → AB
g .

Next, it follows from the exponential convergence (2) of Φ towards Φnilp (in the invariant
metric on Hg) that Φ: (∆∗)k → Ag admits a continuous extension ∆k → AB

g . Since ∆k is



18 ENGEL, DE GAAY FORTMAN, AND SCHREIEDER

normal, Riemann’s removable singularities theorem implies that this continuous extension is
holomorphic. It is unique because the toroidal extension is a separated analytic stack. □

Remark 2.28. In general, one may wish to consider monodromy cones Bf for which the Bf

does not embed into (Ag)trop (Def. 2.14). The issue here is that the GLg(Z)-orbit of such a
cone may intersect itself. This problem is resolved by rather quotienting UZ\Hg ⊂ UZ ⊗ C∗ by
a finite index subgroup Γ ⊂ GLg(Z).

For instance, consider the n-torsion subgroup X[n] ≃ (Z/nZ)2g of a PPAV X. The principal
polarization defines a natural non-degenerate symplectic pairing on X[n]. We define the moduli
space of abelian varieties X with full Lagrangian level n structure by adding the data of:

(1) a Lagrangian subspace Ξ ≃ (Z/nZ)g ⊂ X[n] and
(2) a Z/nZ-basis of Ξ.

All degenerations we consider in this paper admit some full Lagrangian level n structure,
because there is a distinguished Lagrangian subspace grW−2H1(X,Z) on which the monodromy
acts trivially. The moduli stack Ag[n] of abelian varieties with full Lagrangian level n structure
is an étale cover Ãg = Ag[n]→ Ag.

At an appropriate 0-cusp of the Baily–Borel compactification of Ãg (the cusp corresponding
to a Lagrangian subspace Ξ̃ ⊂ H1(X,Z) for which 1

n Ξ̃/Ξ̃ = Ξ), the parabolic stabilizer PZ has
the following structure:

0→ UZ → PZ → Γ(n)→ 0,

where the unipotent subgroup UZ ≃ Symg×g(Z) is the same as without level structure, but the
Levi quotient Γ(n) := ker(GLg(Z)→ GLg(Z/nZ)) is the full level n subgroup.

Then, a toroidal extension of Ãg at this Baily–Borel cusp has the “advantage” that a fan need
only be Γ(n)-invariant. Furthermore, the fundamental domain for the action of Γ(n) is larger
than the fundamental domain for that action of GLg(Z). In particular, given any polyhedral
cone B ⊂ P+

g , there exists some n (depending on B) for which B embeds into the quotient
Γ(n)\P+

g . The preceding results also apply at this cusp, since Γ(n) · B now defines a fan.

Proposition 2.29. Let τ ⊂ Rk be a strictly convex, rational polyhedral cone, and consider any
homomorphism ϕ : Zk → Symg×g(Z) for which B := ϕR(τ) ⊂ P+

g . There exists a quasiprojective
variety Y , divisor D ⊂ Y , point 0 ∈ D, and projective family f∗ : X∗ → Y ∗, Y ∗ = Y \ D, of
PPAVs of dimension g, in the algebraic category, whose monodromy cone at 0 is given by ϕ in
the following sense:

(1) Y admits, near 0 ∈ Y , an étale-local isomorphism to the toric variety Y (τ), sending D

to the toric boundary, and 0 to the torus fixed point.
(2) the monodromy representation of Y \D near 0 is given, under this isomorphism, by

π1(Zk ⊗ C∗, ∗) ≃ Zk ϕ−→ Symg×g(Z) = UZ ⊂ Sp2g(Z).

Here Zk ⊗ C∗ ⊂ Y (τ) is the open torus orbit.
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Observe that it follows from (1) that Y ∗ is smooth near 0.

Proof. We first prove the proposition under the hypothesis that ϕ is injective.
Consider the étale cover Ag[n] → Ag given by full Lagrangian level n ≥ 3 structure as in

Remark 2.28. As noted, there is a Baily–Borel cusp of Ag[n] whose parabolic stabilizer PZ has
unipotent subgroup UZ ⊂ Symg×g(Z) which is the same as for Ag but whose Levi quotient is
PZ/UZ = Γ(n) ⊂ GLg(Z). Since Γ(n) is neat for n ≥ 3, its action on the toroidal extension
Ag[n]

F is free in the tubular neighborhood T (F) of (9). We deduce that there is a Zariski
open V ⊂ Ag[n]

F, containing all maximally degenerate strata, over which the universal family
Xg|V ∗ → V ∗ of PPAVs, V ∗ := V ∩ Ag[n], exists as a scheme (rather than just a DM stack).

Then, choose n ≥ 3 so that B lies in the strict interior of a fundamental domain for the action
of Γ(n) on P+

g and define F = Γ(n) ·B. By the construction of toroidal extensions, the open set
V is étale-locally isomorphic to the toric variety YSymg×g(R)(B).

Choose a finite index sublattice Λ ⊂ Symg×g(Z) for which Λ ∩ B = im(ϕ). Then the finite
étale cover Λ⊗C∗ → Symg×g(Z)⊗C∗ of algebraic tori induces a branched cover of toric varieties
YΛ⊗R(τ)→ YSymg×g(R)(B). Take an algebraic branched cover V ′ → V with the same branching
over the toric boundary, under the étale-local identification of Ag[n]

F with YSymg×g(R)(B). Then,
V ′ is étale-locally isomorphic to YΛ⊗R(τ), over the deepest toroidal stratum.

Finally, to construct Y , we slice V ′ by
(
g+1
2

)
− dim τ generic hyperplanes, which under the

étale-local identification of V ′ with YΛ⊗R(τ) are transversal to the deepest toroidal boundary
stratum. We set Y ∗ to be the inverse image of V ∗, D = Y \ Y ∗, and 0 ∈ D as an intersection
point of the hyperplanes with the deepest stratum. We set the family of abelian varieties
f∗ : X∗ → Y ∗ to be the pullback of the universal family Xg|V ∗ → V ∗ (which exists by the above
discussion) along the map Y ∗ → V ∗.

To verify that the monodromy representation of f∗ is as specified, consider a 1-parameter
family ∆∗ → Y ∗ which extends to a map ∆ → Y sending 0 7→ 0. The monodromy over ∆∗

can be computed in the étale-local model as the monodromy of the family of PPAVs over a
co-character. Such co-characters correspond to lattice points, in τ ∩ Zk. Since f∗ : X∗ → Y ∗

is pulled back from V ∗, the monodromy representation is pulled back along the morphism
of cocharacter lattices, given by the inclusion Λ ↪→ Symg×g(Z) which, in particular, restricts
ϕ : Zk → Symg×g(Z). Finally, it suffices to observe that the monodromy over the cocharacter
B ⊗ C∗ ⊂ Symg×g(Z)⊗ C∗ is canonically identified with B ∈ P+

g ∩ Symg×g(Z), see e.g. (11).
Finally, we address the case where ϕ is not injective. Define τ := ϕR(τ) ⊂ P+

g , viewed
as a polyhedral cone in the lattice ϕ(Zk). We have a descended, injective homomorphism
ϕ : ϕ(Zk) ↪→ Symg×g(Z) satisfying the hypotheses of the proposition. Thus, there is a family
f
∗
: X

∗ → Y
∗ over a base Y

∗
= Y \ D, a point 0 ∈ D, and an étale-local isomorphism

α : Y → Y (τ) near 0 satisfying the conclusion of the proposition. Then the base change of the
morphism α ◦ f∗

: X
∗ → Y (τ) along the morphism of toric varieties Y (τ)→ Y (τ) produces the

desired family f∗ : X∗ → Y ∗ := Y
∗ ×Y (τ) Y (τ) ⊂ Y ×Y (τ) Y (τ) =: Y . Here we take 0 ∈ Y to
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be the fiber product of the points 0 ∈ Y and the torus fixed point of Y (τ). Since the desired
monodromy map factors through ϕ, the condition on monodromy follows. □

Corollary 2.30. Let Bi ∈ P+
g ∩ Symg×g(Z) for i = 1, . . . , k. There is a smooth quasiprojective

variety Y , an snc divisor D ⊂ Y , a zero-stratum 0 ∈ D, and a projective algebraic family
f∗ : X∗ → Y ∗ of PPAVs, such that the local monodromy bilinear form (Def. 2.6) about the
component Di ∋ 0 is Bi for all i = 1, . . . , k.

Note that Bi need not be primitive.

Proof. The corollary follows from Proposition 2.29, by taking τ := Rk
≥0 ⊂ Rk, and the homo-

morphism ϕ : Zk → Symg×g(Z) sending ei 7→ Bi. Here one can assume that Y is smooth and D

is snc because they are étale-locally isomorphic to Y (τ) = Ck and the union of the coordinate
hyperplanes, respectively. □

Remark 2.31. Given any two families X∗
1 , X∗

2 of PPAVs over (∆∗)k, with the same integral
monodromies about each coordinate axis, there is an analytic deformation X ∗ → (∆∗)k × Z of
such families, over a connected base Z, and points 1, 2 ∈ Z for which X ∗

i ≃ X∗
i for i = 1, 2.

Indeed, we may first deform each X∗
i to the nilpotent orbit (8) passing through the same point

of the deepest toroidal stratum of ÃB
g , and then relate the two translates of subtori ⟨B⟩ ⊗ C∗

by a translation in Symg×g(C∗).

3. The Mumford construction

In Section 2.5, we have shown how to extend Ag → AB
g (or Ãg → ÃB

g ) toroidally, so that
the period map (∆∗)k → Ag of any degeneration f : X → ∆k with monodromy cone Bf = B
admits an extension of the period map over the punctures ∆k → AF

g . We will now describe
how to extend the universal family of PPAVs over Ag so that we may pull back this extension,
to produce particularly nice birational models of degenerations. It is useful to have examples
in mind; many are provided in Section 3.5. All degenerations we consider in this section are
maximal, in the sense of Definition 2.13.

3.1. Mumford construction, fan version. Let B ∈ Sym2M∨ be a positive-definite, sym-
metric, integral, bilinear form on a lattice M ≃ Zg. Then B defines a homomorphism

N : M→M∨ = N,

m 7→ B(m,−).

Define ΛB ⊂ N to be im(N). In terms of symmetric g × g matrices, ΛB is the span of the
rows (or columns) of B, and so defines a finite index sublattice of N ≃ Zg.

Definition 3.1. Xtrop(B) := NR/ΛB is the tropical abelian variety associated to B.
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Definition 3.2. A (resp. Q-)tiling of Xtrop(B) = NR/ΛB is a decomposition into convex poly-
topes with integer (resp. rational) vertices, or equivalently, a ΛB-periodic (resp. Q-)polytopal
tesselation of NR. A complete triangulation of Xtrop(B) is a tiling, all of whose polytopes are
lattice simplices of minimal volume (1/g!).

Construction 3.3 (1-parameter case). Let B ∈ Sym2M∨ be positive-definite and let T be a
Q-tiling of Xtrop(B). We define the 1-parameter Mumford degeneration associated to T .

Embed NR ≃ NR × {1} ↪→ NR × R as an affine hyperplane at height 1 in a space of one
dimension higher. Then, the cone over the tiling Cone(T ) defines a rational polyhedral fan in
NR × R ≃ Rg+1. See Figure 8 for an example of a tiling T of R2/ΛB, where

B =

(
4 1

1 3

)
.

Let Y (Cone(T )) denote the corresponding infinite type toric variety. The action of ΛB by
translations on T lifts to a linear action ΛB ↪→ GLg+1(Z) on NR×R acting on the fan Cone(T ),
and hence induces an action of ΛB on Y (Cone(T )) by automorphisms.

Observe that the height function NR × R → R, given by projecting to the final coordinate,
defines a morphism of fans Cone(T )→ R≥0 to the fan of C (which is simply the positive ray in
R). Hence, there is an induced map of toric varieties

Y (Cone(T ))→ Y (R≥0) = C.

Since the action of ΛB preserves the height function, this morphism descends to the quotient
ΛB\Y (Cone(T )) → C, though this full quotient is poorly behaved. Let u be the monomial
coordinate about 0 ∈ C. By standard toric geometry, we have:

(1) The fiber of Y (Cone(T ))→ C over u ∈ C∗ = C \ {0} is N⊗ C∗ ≃ (C∗)g, and the fiber
over u = 0 ∈ C (i.e. the toric boundary) is an infinite quilt of complete toric varieties,
whose dual complex is the original tiling T .

(2) ΛB acts on the dual complex T of the toric boundary by translation, and acts on the
fiber over u ∈ C∗ by translations by the rank g subgroup uB := ΛB⊗u ⊂ N⊗C∗ which
in coordinates is the subgroup

⟨(uB11 , . . . , uB1g), . . . , (uBg1 , . . . , uBgg)⟩ ⊂ (C∗)g, B = (Bij) ∈ Symg×g(Z).

Then, since B is positive-definite, uB ⊂ N ⊗ C∗ is a discrete subgroup for all u ∈ ∆∗.
Hence the action of M ≃ ΛB is properly discontinuous over the unit disk ∆, because the action
is clearly properly discontinuous over u = 0 since M acts freely on the tiles of T . Setting
X(Cone(T )) := ΛB\Y (Cone(T ))u∈∆, we get a proper, complex-analytic degeneration

f : X(Cone(T ))→ ∆

of complex tori, called the standard 1-parameter Mumford degeneration associated to the Q-
tiling T of Xtrop(B) = NR/ΛB.
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The general fiber is principally polarized, by a symplectic form L defined as follows: Let
u ∈ ∆∗. Then, noting that we have a canonical isomorphism H1(N ⊗ C∗,Z) ≃ N, we have a
canonical exact sequence

0→ N→ H1(Xu,Z)
σ−→M→ 0(10)

induced by the long exact sequence of homotopy groups associated to the fibration

uB ↪→ N⊗ C∗ → N⊗ C∗/uB = Xu.

Here we use that we have canonical isomorphisms uB ≃ ΛB ≃ M. Then, we may define a
unimodular symplectic form on H1(Xu,Z) by choosing a splitting of σ and then using the
canonical pairing between M and N. The splitting of σ we choose is specified by a choice of
logarithm 2πiτ = log u. Such a choice gives a presentation

Xu = NC/(N⊕ τN(M)) ≃ Cg/(Zg ⊕ τB(Zg));

the resulting symplectic form L is then independent of the choice of logarithm τ because the
transformation τ 7→ τ+1 defines a symplectomorphism of H1(Xu,Z). Concretely, the symplectic
form L is given as L((n,m), (n′,m′)) = m′(n)−m(n′), for (n,m), (n′,m′) ∈M⊕N.

More generally, given a symmetric g × g matrix a = (aij) ∈ Symg×g(C∗), we may perform
the same construction, but instead quotient by the subgroup

auB := ⟨(a11uB11 , . . . , a1gu
B1g), . . . , (ag1u

Bg1 , . . . , aggu
Bgg)⟩.

We must take |u| small enough that −B log |u| − log |aij | > 0. Then this construction may be
performed relatively, choosing a in some subtorus of Symg×g(C∗) forming coset representatives
for the natural action of u ∈ C∗. We get an analytic degeneration

funiv
◦ : Xuniv

◦ (Cone(T ))→ ∆univ

where ∆univ → Symg×g(C∗)/C∗ is a holomorphic disk bundle over Symg×g(C∗)/C∗, such that
funiv
◦ restricts to a family of PPAVs over the punctured disc bundle (∆∗)univ ⊂ ∆univ.
In terms of the toroidal extensions of Section 2.5, ∆univ maps to the toroidal extension AF

g

whose fan is (the orbit of) a single ray F = GLg(Z)·R≥0B. So every 1-parameter degeneration of
PPAVs with monodromy B admits an extension pulled back from funiv

◦ along an arc transverse
to the boundary divisor {0} × Symg×g(C∗)/C∗ = ∆univ \ (∆∗)univ. ♣

Remark 3.4. Allowing the tiling T to have strictly rational vertices corresponds to allowing
the components of the central fiber to have non-reduced components. More precisely, the
irreducible components Vi ⊂ X0(Cone(T )) := f−1(0) are in bijection with the 0-cells vi ∈ T ,
and the multiplicity di of Vi is the smallest positive integer for which divi ∈ N.

Remark 3.5. When T has integral vertices, the total space X(Cone(T )) or Xuniv
◦ (Cone(T )) of

the Mumford degeneration is smooth if and only if T is a complete triangulation, i.e. T is a tiling
by standard lattice simplices. This condition ensures that Cone(T ) is a regular fan—its cones
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are all standard affine cones. Then X(Cone(T )) → ∆ is a semistable, K-trivial degeneration
(with smooth total space), see Proposition 3.14 below. These are sometimes called Kulikov
models, in analogy to K3 degenerations.

Remark 3.6. By passing to an intermediate cover Hg → Ãg → Ag as in Remark 2.28, we may
assume that the Levi quotient Γ ⊂ GLg(Z) of the parabolic stabilizer at some Baily–Borel 0-cusp
of Ãg acts freely on Pg. Then, when B is primitive, the boundary divisor of ÃR≥0B

g is isomorphic
to the discriminant divisor of funiv

◦ , rather than a further finite quotient of it. In this case, the
base of funiv

◦ glues onto Ãg and thus, we may extend funiv
◦ to a family funiv : Xuniv(Cone(T ))→

ÃR≥0B
g extending the universal family over Ãg. A priori, this extension exists only in the

category of analytic spaces. But it is always an algebraic space (Prop. 6.12), and for certain
choices of tiling T , we may ensure it is relatively projective, see Section 3.3.

When B is not primitive, the base ∆univ of funiv
◦ rather maps to ÃR≥0B

g by a map ramified
over the toroidal boundary divisor, to order the imprimitivity of B.

Proposition 3.7. The standard 1-parameter Mumford degeneration f : X(Cone(T ))→ ∆ cor-
responding to a tiling T of NR/ΛB has monodromy invariant B. The period map on the uni-
versal cover of ∆∗ is the nilpotent orbit through the origin: The maps

Φ̃, Φ̃nilp : H→ Symg×g(Z)\Hg

satisfy Φ̃(τ) = Φ̃nilp(τ) = τB, where u = e2πiτ is the coordinate on ∆∗. More generally, the
period map on the restriction of funiv

◦ to the universal cover of (∆∗)univ|{a} for a ∈ Symg×g(C∗),
is given by Φ̃(τ) = Φ̃nilp(τ) =

1
2πi(log aij) + τB.

Proof. On the one hand, the coordinatewise exponential E(τB) is given byexp(2πiB11τ) · · · exp(2πiB1gτ)

· · · · · ·
exp(2πiBg1τ) · · · exp(2πiBggτ)

 =

uB11 · · · uB1g

· · · · · ·
uBg1 · · · uBgg

 .(11)

On the other hand, the fiber of the universal family Xg → Ag over the period matrix σ ∈ Hg is
simply the complex torus Cg/(Zg⊕Zgσ) ≃ (C∗)g/⟨rows of E(σ)⟩ so the proposition follows. □

Construction 3.8 (k-parameter case). We now extend Construction 3.3 to the multivari-
able setting. Consider a collection of positive semi-definite bilinear forms Bi ∈ Sym2M∨ for
i = 1, . . . , k for which

∑k
i=1Bi is positive-definite. These bilinear forms define a collection of

symmetric homomorphisms Ni : M→ N.
We consider the quotient of N⊗ C∗ ≃ (C∗)g by the subgroup

uB1
1 · · ·u

Bk
k := ⟨(u(B1)11

1 · · ·u(Br)11
k , . . . , u

(B1)1g
1 · · ·u(Bk)1g

k ), . . . ,

(u
(B1)g1
1 · · ·u(Bk)g1

k , . . . , u
(B1)gg
1 · · ·u(Bk)gg

k )⟩ ≃ Zg.
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If |ui| < 1 for all i, the resulting action of uB1
1 · · ·u

Bk
k on (C∗)g is properly discontinuous. Thus,

the quotient is a fibration

f∗ : X∗(B1, . . . , Bk)→ (∆∗)k(12)

of PPAVs, over a punctured polydisk, where the base has coordinates ui.
To define an extension over ∆k, we require a fan S inside of NR × Rk ≃ Rg+k which is

M-periodic for an action respecting the projection to Rk. More precisely, declare m ∈ M to
act linearly on NR × Rk by

(n, r⃗) 7→ (n+ (r⃗ · N⃗)(m), r⃗) ∈ NR × Rk,(13)

where r⃗ ·N⃗ := r1N1+ · · ·+rkNk and Ni : M→ N are the symmetric homomorphisms associated
to Bi ∈ Sym2M∨ as above.

The fan S must then be M-periodic (with respect to the action (13)) and the projection
to Rk must induce a morphism of fans to (R≥0)

k, such that Supp(S) contains Rg × (1, . . . , 1).
Furthermore, we usually require that the morphism S → (R≥0)

k is flat, that is, the image of
any cone of S is a cone of (R≥0)

k.
Then the multivariable Mumford construction is the result of quotienting by M the inverse

image Y (S)u∈∆k of ∆k in the infinite type toric variety Y (S). We call this quotient

f : X(S)→ ∆k.(14)

It is a proper, analytic, flat extension of f∗ : X∗(B1, . . . , Bk)→ (∆∗)k, with flatness guaranteed
by the flatness of the fan map. As in Construction 3.3, the fibration M = uB1

1 · · ·u
Bk
k ↪→

N⊗ C∗ → Xu := f−1(u) defines an exact sequence

0→ N→ H1(Xu,Z)
σ−→M→ 0, u = (u1, . . . , uk) ∈ (∆∗)k,(15)

and by choosing a section of σ by taking logarithms of ui, the canonical pairing between M and
N induces a well-defined principal polarization on Xu.

Over the co-character ∆→ ∆k defined by u 7→ (ur1 , . . . , urk), the construction specializes to
the 1-variable Mumford Construction 3.3 associated to B = r1B1 + · · ·+ rkBk and the relevant
fan is the restriction of S to the inverse image of R≥0r⃗ ⊂ (R≥0)

k; here S|R≥0r⃗ ≃ Cone(T ) for a
tiling T depending on r⃗. In particular, by Proposition 3.7, the monodromy cone (see Definition
2.7) of the degeneration f∗ : X∗(B1, . . . , Bk)→ (∆∗)k is given by B := R≥0{B1, . . . , Bk}.

More generally, we may, as in Construction 3.3, perform the multivariable construction
relatively over the torus (Symg×g(Z)/⟨B⟩) ⊗ C∗ by twisting the M-action by some elements
a = (aij) ∈ Symg×g(C∗). Here, we have quotiented by ⟨B⟩ ⊗ C∗, so as to reduce redundant
moduli of the general fiber as much as possible. We denote the resulting fibration by

funiv
◦ : Xuniv

◦ (S)→ (∆k)univ

where (∆k)univ → (Symg×g(Z)/⟨B⟩) ⊗ C∗ is a polydisk bundle. Note that funiv
◦ : Xuniv

◦ (S) →
(∆k)univ is a locally trivial deformation of f : X(S)→ ∆k. Indeed, as analytic germs about the
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zero section of (∆k)univ, the universal cover of the former is the product of the universal cover
of the latter with the torus of twists (Symg×g(Z)/⟨B⟩)⊗ C∗. ♣

Remark 3.9. In terms of fans, the (possibly rational) origin section of X(S)→ ∆k is declared
to be the image of the subtorus whose cocharacter lattice is {0} × Zk ⊂ N× Zk.

Remark 3.10. Let B1, . . . , Bk ∈ Symg×g(Z) and let f∗ : X∗(B1, . . . , Bk) → (∆∗)k be the
family of g-dimensional PPAVs defined in (12), with fiber Xt, t ∈ (∆∗)k. Then, as we have
seen above, the monodromy bilinear form about {ui = 0} (Def. 2.6) equals Bi for a suitable
symplectic basis of H1(Xt,Z), cf. Corollary 2.30.

Construction 3.11 (multiparameter case, cone of a fan for Ag). Suppose that the cone

B := R≥0{B1, · · · , Bk} ⊂ P+
g

is not standard affine, or not even simplicial. Recall from Remark 2.28 that for some étale
cover Ãg → Ag, we have a toroidal extension Ãg → ÃB

g whose monodromy cone is B. For an
appropriate choice of fan S, Construction 3.8 gives a degeneration of abelian varieties over a
k-dimensional polydisk X(S)→ ∆k ⊂ Y (Rk

≥0). In fact, we may descend the construction to an
analytic open neighborhood of the torus fixed point in the affine toric variety YRB(B), by taking
a fan S supported rather in the vector space NR × RB, and periodic with respect to the same
action (13). Here, the subscript RB of YRB refers to the fact that we take the toric variety of
the polyhedral cone B ⊂ RB, sitting inside the vector space RB, rather than inside Symg×g(R).

Taking the universal twist, we produce a degeneration

Xuniv
◦ (S)→ T (B) ⊂ Y (B)

where now Y (B) is the toric variety of the polyhedral cone B ⊂ Symg×g(R) and T (B) is an
analytic tubular neighborhood of the deepest toric boundary stratum. Then, following Section
2.5, we may analytically glue T (B) along the complement T ∗(B) of the toric boundary to Ãg.
Taking the gluing to respect the zero sections, we produce a degeneration

Xuniv
+ (S)→ Ãg ∪T ∗(B) T (B) =: Ã+

g ⊂ ÃB
g

which analytically extends the universal family X̃g → Ãg.
A more detailed construction of Xuniv

+ (S) would take us too far afield, but one may unify
the set-up of toroidal extensions of Ag laid out in Section 2.5, with the toroidal construction
of X(S), by forming a fan Suniv in the larger space P+

g ⊕ Rg ⊂ Symg×g(R) ⊕ Rg admitting
a morphism of fans Suniv → B via projection to the first factor. Namikawa was the first to
introduce such “mixed cone decompositions”, see [49, Sec. 3] and [51, Sec. 9] (though in these
texts, the focus is one particular Mumford construction, similar to Construction 6.5).

The family Xuniv
+ (S) further extends to a proper, flat family

funiv : Xuniv(S)→ ÃB
g(16)
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surjecting onto the base ÃB
g . Indeed, this follows from [17, Ch. VI.1]. The idea is as follows.

By taking T (B) ⊂ Y (B) as the maximal analytic open neighborhood of the toric boundary over
which the action of M on the inverse image of T (B) in Y (Suniv) is properly discontinuous, the
base T (B) surjects onto the toroidal extension ÃB

g . Then, the family descends from a partial
uniformization of the Baily–Borel strata of intermediate dimension, to yield (16).

Most degenerations appearing in this paper are special cases of the current construction,
which are, in turn, special cases of toroidal extensions of the universal family of abelian varieties,
as discussed in Faltings–Chai [17, Ch. VI.1]. The fan S is an instance of a “GL(X) ⋉ Xs-
admissible polyhedral cone decomposition” (for s = 1) in the terminology of loc.cit. up to the
following two minor modifications: We do not demand as in [17, Ch. VI, Def.1.3.(iii)] that
S defines a complete fan (i.e. a compactification of Xg) and when working on an étale cover
Ãg → Ag we only demand admissibility for a finite index subgroup. The constructions used to
prove [17, Ch. VI.1, Thm. 1.13] generalize to this setting, to yield an extension X̃ G

g → ÃF
g of

the universal family, for any morphism G→ F from a mixed cone decomposition (for X̃g) to a
cone decomposition (for Ãg). The above family (16) is a special case.

A condition which is crucial for our applications in [27] is to achieve both a smooth total
space and equidimensionality (i.e. flatness) over ÃB

g . As mentioned in [17, Ch. VI, Def. 1.3.(v),
Rem. 1.4], achieving both of these properties is a hard combinatorial problem, one closely related
to the main result of [2]; in general, it is only possible after modifying the base ÃB

g .
As additional historical notes, the first example of a complete fan for Xg (equidimensional

but not regular) was provided by Namikawa, see e.g. [49, Sec. 13, Prop. 13.5, Thm. 13.6]. The
generalization of Faltings–Chai to the more general setting of mixed Shimura varieties is Pink’s
dissertation, see especially [54, Ex. 2.25, Ch. 6, Ch. 10] for discussion relevant to Xg. ♣

As an example of the above construction, the Tate curve extends the family of elliptic curves
C∗/uZ over the unit disk ∆u = {u ∈ C : |u| < 1}, see Example 3.31. The maximally extended
base, on which uZ acts properly discontinuously, is ∆u ⊃ ∆∗

u ≃ Z\H. The family over ∆∗
u

descends (as an orbifold) along the infinite degree surjection Z\H → SL2(Z)\H, to extend the
universal family over the orbifold A1 = SL2(Z)\H. Only the punctured disc ∆u(e

−2π)∗ of the
smaller analytic disk ∆u(e

−2π) := {u ∈ C : |u| < e−2π} ⊂ ∆u embeds, on the level of coarse
spaces, into SL2(Z)\H (as stacks, the degree of the map from ∆u(e

−2π)∗ onto its image is,
rather, equal to two, because of the Z/2-gerbe on the target).

Remark 3.12. An additional subtlety is that, to glue funiv to the universal family, requires
in general, a cover of ÃB

g which is étale in the punctured neighborhood of the boundary, but
branched over the boundary divisors. For instance, when B = R≥0B is a ray, this branched
cover is necessary if and only if B is imprimitive (Rem. 3.6). Such a branched cover of ÃB

g is
guaranteed to exist in an affine open neighborhood of the deepest toroidal stratum, as shown
in Proposition 2.29. But it is unclear, in general, whether there exists a global étale cover of Ãg

achieving the desired branching behavior. For example, supposing the monodromy cone were of
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the form B = R≥0{3B1, 5B2} for B1, B2 primitive—is then the local, toroidal branched cover of
ÃB

g which is branched to orders 3, 5 over the two toric boundary divisors ∂1, ∂2 ⊂ ÃB
g induced

by passing to a further finite index subgroup of Sp2g(Z)?
Regardless, this finite cover does exist in an affine open neighborhood of the relevant boundary

stratum. By a slight abuse of notation, we continue to notate the resulting cover and its toroidal
extension by Ãg and ÃB

g , even though Ãg is only étale over a Zariski open subset of Ag.

To summarize Constructions 3.8 and 3.11:

Proposition 3.13. Let S be a fan in NR×RB satisfying the properties described in Construc-
tions 3.8 and 3.11. In particular, S is M-invariant under the action (13), for a collection of
symmetric bilinear forms {B1, . . . , Bk} ⊂ Sym2M∨ which are the rays generating a polyhedral
cone in the space of positive semidefinite bilinear forms on M, with

∑k
i=1Bi positive-definite.

Then Construction 3.11 produces a flat, proper extension of the universal family over Ãg, in
the category of complex analytic spaces,

Xuniv(S)→ ÃB
g .

We now examine when a Mumford degeneration is K-trivial:

Proposition 3.14. If S(1,...,1) is a tiling (as opposed to a Q-tiling) of NR, then the multivariable
Mumford construction f : X(S)→ ∆k (see 3.8) is K-trivial: KX(S) ∼ 0.

Proof. The universal cover of X(S) admits an analytic open embedding into the toric variety
Y (S), whose anticanonical divisor is the reduced toric boundary. This toric boundary in turn is
the reduced inverse image of the union of the coordinate hyperplanes V (u1 · · ·uk) ⊂ Ck under
the toric morphism Y (S)→ Y (Rk

≥0) ≃ Ck. Thus, if the inverse image of V (u1 · · ·uk) equals its
reduced inverse image, we conclude that Y (S) and in turn X(S) are relatively K-trivial.

To check that the divisors contained in the inverse image of V (ui) are reduced, it suffices to
restrict to the arc ∆→ ∆k, u 7→ (u, . . . , u). We now apply Remark 3.4. □

3.2. Weight filtration and dual complex.

Proposition 3.15. Let X(S)→ ∆k be a fan Mumford Construction 3.8 and let Xt be the fiber
over a point t ∈ (∆∗)k. Consider the exact sequence

0→ N→ H1(Xt,Z)→M→ 0,

see (15). Then N = N ⊂ H1(Xt,Z) is the weight filtration W−2 = W−1 ⊂ W0 of the limiting
mixed Hodge structure on H1(Xt,Z). That is, there are integral isomorphisms

M ≃ grW0 H1(Xt,Z),

N ≃ grW−2H1(Xt,Z).

Furthermore, Ni ≃ Nmon
i and Bi ≃ Bmon

i where Nmon
i : grW0 H1(Xt,Z) → grW−2H1(Xt,Z) and

Bmon
i ∈ Sym2(grW0 H1(Xt,Z))∨ are the monodromy operators and bilinear forms of Section 2.3.
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Proof. The identification of M and N with the stated graded pieces of the weight filtration
follows by construction, see e.g. (15)—the homology group H1(N ⊗ C∗,Z) ≃ N is spanned
by the vanishing cycles, which are null-homologous in the neighborhood of any 0-dimensional
toric stratum of X(S). Proposition 3.7 shows that the monodromy operator Nmon

i agrees with
Ni : M → N and the hypothesis that B =

∑k
i=1Bk > 0 ensures that W−2 = (imN)sat for

N =
∑k

i=1Ni agrees with N. □

Proposition 3.16. Let X(S) → ∆k be a fan Mumford Construction 3.8. Then there is a
canonical isomorphism M ≃ H1(Γ(X0),Z) where Γ(X0) is the dual (polyhedral) complex of the
central fiber X0.

Proof. The dual polyhedral complex of the M-prequotient is the infinite periodic polyhedral
decomposition of NR given by the preimage of (1, . . . , 1) ∈ Rk under the morphism of fans
S → (R≥0)

k, see Construction 3.8. It follows that Γ(X0) ≃ S(1,...,1)/N(M) = NR/ΛB. Thus,
there is a canonical isomorphism H1(Γ(X0),Z) ≃M. □

3.3. Mumford construction, polytope version. We discuss now a polytopal version of the
Mumford degeneration, which outputs a relatively projective degeneration, together with a
relatively ample line bundle. Furthermore, it is isomorphic to the fan construction as in Section
3.1, for an appropriate choice of fan S in NR × Rk. Our approach is, in part, inspired by
Gross–Siebert [31, Sec. 2], and their construction of canonical theta functions, building on the
classical theory of theta functions, see e.g. [46, Prop. II.1.3 and Thm. II.1.3]. It is primarily
based on a “PL version” of the classical theory, in line with Alexeev–Nakamura [7].

Let A = Cg/(Zg ⊕ Zgσ) be an abelian variety with principal polarization L. The classical
theory of theta functions studies explicit sections of the powers of L, a lift of L, by pulling
back to the universal cover π : Cg → A. Since π∗L ≃ OCg , such sections can be understood via
holomorphic functions on Cg, with appropriate factors of automorphy under the deck action of
the periods Zg ⊕ Zgσ. Such holomorphic functions are called theta functions. We do the same
here, for the intermediate cover (C∗)g → A discussed in the introduction, of the fibers A = Xt

of a degenerating family of PPAVs X∗ → (∆∗)k. These theta functions extend as holomorphic
sections of a line bundle over a toric extension of X∗ over ∆k.

Consider the standard torus Tg := Rg/Zg = MR/M. We define ZPL/ZL to be the sheaf
on Tg of Z-piecewise linear functions modulo the subsheaf of Z-linear functions. On an open
set U ⊂ MR/M, the sections ZPL(U) := {f : U → R} consist of continuous, piecewise linear
functions, which in a domain D ⊂ U of linearity are of the form

f |D(m) = a1m1 + · · ·+ agmg + ag+1(17)

with aj ∈ Z. Here mi are integral coordinates on MR which define local coordinates on D.
Similarly, ZL is the sheaf of locally Z-linear functions on U , of the same shape. A section
ZPL/ZL(U) can be understood globally on U in terms of its “bending locus” (Definition 3.17).
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The pull-back of a section bi ∈ H0(Tg,ZPL/ZL) to the universal cover MR → Tg lifts to
a Z-piecewise linear function bi : MR → R, since H1(MR,ZL) = 0. It is integer-valued on
M and, more generally, 1

wZ-valued on 1
wM for any positive integer w ∈ N. The function

x 7→ bi(x+m)− bi(x) is a linear function on MR for all m ∈M, because bi is lifted from Tg.
Conversely, any Z-piecewise linear function bi : MR → R, such that bi(x+m)− bi(x) is linear,
for all m ∈ M, descends to a section bi ∈ H0(Tg,ZPL/ZL) that determines the equivalence
class [bi] uniquely (where bi ∼ b′i if the difference bi − b′i is linear).

The domains of linearity of bi are rational polyhedra. The sections bi for which a lifted
function bi is convex form a convex polyhedral subcone of H0(Tg,ZPL/ZL).

Definition 3.17. Associated to bi ∈ H0(Tg,ZPL/ZL) is a weighted polyhedral complex in Tg,
called the bending locus Bend(bi). Its faces are the codimension 1 polytopes in Tg along which
bi is non-linear, and the bending parameter (positive when bi is convex) defining the weight on a
codimension 1 polytope, is the change in slope of the restriction of bi an integral, complementary
segment to the hyperplane containing the face.

Definition 3.18. Let {b1, . . . , bk} ∈ H0(Tg,ZPL/ZL) be a collection of convex sections, with
nontrivial bending in every direction, i.e. for every m ∈ M, there exists some i ∈ {1, . . . , k}
for which bi(x +m)− bi(x) ̸≡ 0 is not identically zero. Equivalently,

⋃
iBend(bi) cuts Tg into

polytopes. We say that the b1, . . . , bk are dicing if the polyhedral decomposition
⋃

iBend(bi)

has integral vertices.

The dicing condition is quite restrictive, since only the origin of Tg may appear as a vertex
of
⋃

iBend(bi). We will relax this hypothesis in Construction 3.38.

Example 3.19. Let g = 1 and M = Z, so that MR/M = R/Z. Define a PL function
b : R → R which is linear on each interval [m,m + 1], m ∈ Z, and has values on Z equal to
b(m) = 1

2(m
2 −m). The graph of b is depicted in the left of Figure 2. The locus where b is

non-linear is Z, hence Bend(b) = {0} ∈ R/Z = T1, with weight one, see Figure 4.

Remark 3.20. Any projective morphism X → ∆k of analytic spaces gives rise to an algebraic
family X̂ → SpecC[[u1, . . . , uk]], the formal completion of X → ∆k. Indeed, the projectivity
of X → ∆k implies that there is a positive integer N such that X ⊂ ∆k × PN is cut out by
homogeneous polynomials whose coefficients are convergent power series. The completion X̂ is
then cut out by the same equations, viewing the convergent power series as formal power series
in C[[u1, . . . , uk]].

Construction 3.21. Let {b1, . . . , bk} ∈ H0(Tg,ZPL/ZL) be a collection of convex sections,
with nontrivial bending in every direction, and assume that the b1, . . . , bk are dicing. Let
v ∈ 1

wM/M ∈ Tg be a 1
w -integral point of Tg, for some positive integer w ∈ N. We define the
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weight w theta function associated to v to be

Θv(z1, . . . , zg, u1, . . . , uk) :=
∑

v ∈ v+M

(z
x1(v)
1 · · · zxg(v)

g u
b1(v)
1 · · ·ubk(v)k )w(18)

where xi is the i-th coordinate function, cf. [7, Sec. 4.5].
The condition that the bi have bending in every direction ensures that this power series

converges in an appropriate power series ring (which notably involves both negative and positive
powers of zi). Consider the C[[u1, . . . , uk]]-module

R(b1, . . . , bk) :=
∞⊕

w=0

⊕
v ∈ 1

w
M/M

C[[u1, . . . , uk]] ·Θv.

Expanding the product of two theta functions Θv1 , Θv2 of weights w1, w2 by collecting all
monomial terms into M-orbits (see (23) below), we see that there is an expansion

Θv1Θv2 =
∑

v3∈ 1
w1+w2

M/M

cv3v1v2(u1, . . . , uk)Θv3(19)

where the coefficients cv3v1v2(u1, . . . , uk) ∈ Z[[u1, . . . , uk]] are integral power series, as opposed to
simply Laurent series, by the convexity of the bi, see e.g. [31, Eqn. (2.5)]. Note that to get a
nonzero coefficient, there must be a lift of v3 of the form

v3 =
w1v1 + w2v2
w1 + w2

.

Hence R(b1, . . . , bk) is closed under multiplication. It is, furthermore, a finitely generated,
graded ring over C[[u1, . . . , uk]]. Consider the resulting projective C[[u1, . . . , uk]]-scheme

ProjC[[u1,...,uk]]
R(b1, . . . , bk)→ SpecC[[u1, . . . , uk]].(20)

It is a degeneration of PPAVs of dimension g, with the theta functions providing the projective
embedding, which is the completion (in the sense of Remark 3.20) of a relatively projective
complex analytic degeneration

f : X(b1, . . . , bk)→ ∆k(21)

over a polydisk. This can be proven e.g. by observing that Θv are analytically convergent power
series on a Mumford fan construction when all |ui| < 1, a fact which is justified in the course
of the proof of Theorem 3.29. We call f the Mumford degeneration associated to {b1, . . . , bk}.

Remark 3.22. That the generic fiber of (20) is an abelian variety, also follows from the classical
theory of theta functions.

We have assumed that the bi are dicing, see Definition 3.18. Define Γ ⊂ MR × Rk as the
overgraph of the collection of functions (b1, . . . , bk) : MR → Rk, that is,

Γ = Γ(b1, . . . , bk) + (R≥0)
k ⊂MR × Rk.(22)
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Then, Γ is an infinite convex, locally finite polytope in M × Rk, whose faces are integral
polytopes. We may think of the lattice points, in Γ ∩ (M × Zk), as the monomial sections of
O(1) on the corresponding infinite type toric variety Y = YΓ, see Section 2.4. Similarly, we may
think of the 1

w -integral points of Γ as the monomial sections of O(w), cf. Remark 2.21.
Then, the theta function Θv for v ∈ 1

wM/M is the result of summing such monomials, over
an M-orbit, where m ∈M acts on MR × Rk by the affine-linear action

(x, r⃗) 7→ (x+m, r⃗ + b⃗(x+m)− b⃗(x))(23)

and b⃗ = (b1, . . . , bk). Note that this action of M preserves Γ.
Form the normal fan S to Γ. As (23) gives an action of M on Γ, it induces an M-action

on S. This action agrees with the action (13) for a multivariable Mumford fan construction,
associated to the bilinear forms B1, . . . , Bk ∈ Sym2M∨ defined by the equations

Bi(m,m′) := bi(m+m′)− bi(m)− bi(m
′) + bi(0), m,m′ ∈M.(24)

By the convexity of the bi : MR → R, the normal fan S ⊂ (MR × Rk)∨ admits a canonical
morphism to the fan Rk

≥0 ⊂ Rk ≃ (Rk)∨, given by restricting linear functionals in (MR ×Rk)∨

to Rk. Then, the data of S, together with the projection to Rk
≥0, defines the data of a Mumford

fan Construction 3.8. We will prove that X(b1, . . . , bk) ≃ X(S) in Theorem 3.29.
To “twist” the construction, as in Constructions 3.3, 3.8, 3.11, by some continuous parameters

a = (aij) ∈ Symg×g(C∗), and produce a universal degeneration which represents all possible
continuous moduli of degenerations of the specified combinatorial type, we must introduce
appropriate coefficients

Θa
v(z1, . . . , zg, u1, . . . , uk) :=

∑
v ∈ v+M

dv(a)(z
x1(v)
1 · · · zxg(v)

g u
b1(v)
1 · · ·ubk(v)k )w

for dv(a) ∈ C∗. This twists the structure constants to give a graded ring Ra(b1, . . . , bk) and
ranging over the moduli of a, produces a relatively projective multivariable Mumford de-
generation over the base which is a SpecC[[u1, . . . , uk]]-bundle over (C∗)D, D = dimAg −
rankR{B1, . . . , Bk}. It agrees on the general fiber with the quotient by the family of subgroups
auB1

1 · · ·u
Bk
k . These constants dv(a) form part of the so-called “degeneration data” of [17]. ♣

Notation 3.23. The construction of the ring R(b1, . . . , bk) depends only on the bi and not
the lifts bi to PL functions on MR. But it is usually easiest to specify bi by providing the PL
function bi : MR → R. With this in mind, we will henceforth notate the Mumford degeneration
X(b1, . . . , bk)→ ∆k by X(b1, . . . , bk)→ ∆k, Bend(bi) by Bend(bi), etc.

Remark 3.24. The number of theta functions Θv of weight w is exactly wg. These functions
form the theta basis, a canonical (up to scaling) basis of sections of H0(X(b1, . . . , bk), L⊗w)

where L = O(1) is a lift of the relative principal polarization. In particular, Θ = V (Θ0)

extends as a Cartier divisor over the degenerating family X(b1, . . . , bk)→ ∆k.
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Since the bi are dicing, Γ is an integer polyhedron, which is why OY (1) is Cartier on Y =

YΓ. It also admits a natural linearization with respect to the M-action. This is why the
principal polarization extends, as a line bundle, to X(b1, . . . , bk). Absent the dicing condition,
one may consider the least positive integer d for which the overgraph Γ is a 1

d(M×Zk)-integral
polyhedron. Then OY (d) defines an integral polyhedron and so descends as a line bundle on
X(b1, . . . , bk) which is a lift of d times a principal polarization on the smooth fibers.

Definition 3.25. We say that {b1, . . . , bk} are 1
d -dicing if they are Q-piecewise linear, the

corresponding overgraph Γ of Γ(b1, . . . , bk) ⊂MR×Rk is a 1
d(M×Zk)-integral polyhedron, and

in the local form (17), the slopes a1, . . . , ag ∈ Z are still integral, but we allow ag+1 ∈ 1
dZ. We

denote sheaves of functions with such a local form by 1
dZPL and 1

dZL.

Construction 3.26. Like Construction 3.11 vis-à-vis Construction 3.8, we generalize Con-
struction 3.21 to the case where {b1, . . . , bk} are the extremal rays of a convex polyhedral cone
b ⊂ H0(Tg,ZPL/ZL) mapping isomorphically to a convex polyhedral cone B ⊂ P+

g , under the
map bi 7→ Bi with Bi ∈ Sym2M∨ defined in (24). We replace (b1, . . . , bk) by the PL function

MR → (Rb)∨ ≃ RdimRb

m 7→ (b 7→ b(m)).

Otherwise, the details of Construction 3.21 are the same. The output is a relatively projective
degeneration of abelian varieties

X(b)→ T (b) ⊂ Y (b)

over an analytic tubular neighborhood of the torus fixed point of Y (b). Performing this con-
struction with the universal twist by a ∈ Symg×g(Z)/⟨B⟩ ⊗ C∗, for B = R≥0{B1, . . . , Bk}, and
extending/descending over the toroidal extension ÃB

g as in Construction 3.11, we may produce
a relatively projective analytic extension of the universal family

Xuniv(b)→ ÃB
g ,

see Proposition 3.13. We will show in Section 6 that Xuniv(b)→ ÃB
g is an étale-locally projective

morphism of algebraic spaces over ÃB
g . ♣

Remark 3.27. Our primary case of interest in [27] is where b defines a simplicial cone B ⊂ P+
g

and in this setting, Constructions 3.8 and 3.21 over a polydisk will suffice.

The next proposition follows directly from Construction 3.21:

Proposition 3.28. Let (Tg, b1, . . . , bk) define a polarized, multivariable Mumford degeneration
X(b1, . . . , bk)→ ∆k. Then the following hold:

(1) The intersection complex of the fiber XI over the generic point of the coordinate subspace
V (ui : i ∈ I) is the polyhedral decomposition

⋃
i∈I Bend(bi) of Tg.
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(2) The polytopes of this polyhedral decomposition, when compact, are the polytopes of the
polarized toric components, in the sense of Remark 2.21.

(3) Non-compact faces F of
⋃

i∈I Bend(bi) are of the form F ≃ F0 × Th with F0 compact.
The dimension of the abelian part of the corresponding component of XI is h. This
component is a toric variety bundle over an abelian h-fold, possibly self-glued, where the
toric variety has polytope F0.

Sketch. The universal cover of the Mumford construction is the toric variety YΓ whose polytope
is Γ, and hence Γ is the intersection complex of this universal cover. Then the intersection
complex of the Mumford construction itself is the quotient by the M action, and the stated
description follows—components with an abelian factor of dimension h > 0 arise from infinite
faces of Γ stabilized by a rank h subgroup of M. See also Theorem 3.29. □

3.4. Comparison of polytope and fan constructions. We explain why the polytope con-
struction of the Mumford degeneration coincides with the fan construction.

Theorem 3.29. Let {b1, . . . , bk} ∈ H0(Tg,ZPL/ZL) be a collection of convex sections, with
nontrivial bending in every direction, which are dicing. Define Γ ⊂ MR × Rk as in (22), and
let S be the normal fan to Γ. Then, there is a canonical isomorphism of analytic spaces

X(b1, . . . , bk) ≃ X(S)

over ∆k, where X(b1, . . . , bk) → ∆k is the polytope Mumford degeneration defined in (21) and
where X(S)→ ∆k is the fan Mumford degeneration defined in (14).

Proof. Let Y = YΓ be the locally finite type toric variety defined by the polytope Γ, as in
Section 2.4. Then Y = Y (S) by definition, and the M-action (23) on Γ, which we denote m ·−,
defines a linearization of the line bundle OY (1) associated to the polytope Γ. A 1

w -integral
point (v, r⃗) ∈ Γ∩ 1

w (M×Zk) defines an analytic section (z, u)w(v,r⃗) := zwvuwr⃗ ∈ H0(Y,OY (w)).
When this 1

w -integral point lies on the graph Γ(b1, . . . , bk), we have the equality

Θv(z, u) =
∑
m∈M

(z, u)w(m·(v,r⃗))(25)

of analytic functions, on the analytic open subset of Y where all |ui| < 1. Convergence holds
because the bi having nontrivial bending in all directions (see Definition 3.18), and so with
respect to an exhaustion of M, the powers of u grow quadratically while the powers of z only
grow linearly. If, rather, (v, r⃗) lies above the graph Γ(b1, . . . , bk), the corresponding sum over
the M-orbit is simply a monomial in u times Θv(z, u). We deduce that Θv(z, u) descends, as
an analytic section, to H0(X(S),L⊗w) where L is the descent of the M-linearized line bundle
OY (1) to the M-quotient X(S).

It suffices then to verify that these descended sections define, for some fixed w, a relatively
very ample line bundle on X(S)—in particular, that they separate points and tangents. The
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argument is essentially the same as [7, Thm. 4.7], replacing the Delaunay decomposition with
the more general decompositions

⋃
iBend(bi) that we consider.

In fact, in the setting where all polytopal faces F cut by
⋃

iBend(bi) are embedded as opposed
to immersed in Tg, the multiplication rule (19) for theta functions Θv for v ∈ F , reduce,
modulo the ideal (u1, . . . , uk), to the usual multiplication rule (Rem. 2.21) for the monomial
sections of the powers of the line bundle L|YF

on the toric stratum YF ⊂ X(S) associated to
F ; see Lemma 3.33. Assuming w is sufficiently large, we also ensure that the non-normal union
X0(S) = limF YF is projectively embedded via L⊗w. One deduces very ampleness for all fibers,
by the openness of very ampleness. □

For instance, we have the following special case, for 1-parameter degenerations:

Corollary 3.30. Let b ∈ H0(Tg,ZPL/ZL) be dicing, with PL lift b : MR → R and define
Γ := Γ(b) + R≥0 ⊂ MR × R. Let S be the normal fan to Γ, and define B ∈ Sym2M∨ by
B(m,m′) := b(m+m′)− b(m)− b(m′)+ b(0). Define a ΛB-invariant tiling T of NR by slicing
S at height 1. Then X(Cone(T )) ≃ X(S) ≃ X(b). □

3.5. Examples. We now discuss some examples of the Mumford construction.

Example 3.31. The basic example is the Tate curve C∗/uZ. Here g = 1, so MR/M ≃ R/Z.
Define a PL function b : R → R which is linear on each interval [m,m + 1], m ∈ Z, and has
values on Z equal to b(m) = 1

2(m
2 −m). The graph of b is depicted in the left of Figure 2.

Figure 2. Mumford polytope construction of the Tate curve, Θ0/1(z, u) in blue,
Θ0/2(z, u) in red, Θ1/2(z, u) in green.
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Then Γ = {(m, 12(m
2 −m)) : m ∈ Z = M} ⊂ M × Z = Z2 and Γ is the shaded region in

Figure 2. The theta functions of weight 1, 2, and 3 are

Θ0/1(z, u) = · · ·+ z−3u6 + z−2u3 + z−1u1 + z0u0 + z1u0 + z2u1 + z3u3 + · · ·

Θ0/2(z, u) = · · ·+ z−6u12 + z−4u6 + z−2u2 + z0u0 + z2u0 + z4u2 + z6u6 + · · ·

Θ1/2(z, u) = · · ·+ z−5u9 + z−3u4 + z−1u1 + z1u0 + z3u1 + z5u4 + z7u9 + · · ·

Θ0/3(z, u) = · · ·+ z−9u18 + z−6u9 + z−3u3 + z0u0 + z3u0 + z6u3 + z9u9 + · · ·

Θ1/3(z, u) = · · ·+ z−8u15 + z−5u7 + z−2u2 + z1u0 + z4u1 + z7u5 + z10u12 + · · ·

Θ2/3(z, u) = · · ·+ z−7u12 + z−4u5 + z−1u1 + z2u0 + z5u2 + z8u7 + z11u15 + · · ·

with those of weight 1 and 2 depicted in Figure 2 as the sum of the blue, red, and green
monomials. The normal fan is depicted in Figure 3 and the tiling T (i.e. the slice of the normal
fan at height 1) is the tiling of R1/ΛB by a segment of length 1. Here ΛB ≃ Z because the
bilinear form on R1 defined by the formula

B(x, y) = 1
2(x+ y)2 − 1

2x
2 − 1

2y
2 = xy

has 1× 1 Gram matrix [1] ∈ Sym1×1(Z).

Figure 3. Normal fan of the Tate curve.

The torus T1 = R/Z and the weighted polyhedral complex Bend(b) inside it are depicted in
Figure 4 (the most condensed presentation of a Mumford construction). This figure happens
to be the same as the tiling T , but this is a coincidence. By Proposition 3.28, this polyhedral
decomposition of T1 is the intersection complex of the special fiber X0 of the degeneration of
elliptic curves X = X(b) → ∆, with strata formed from the polytopes of the decomposition
Bend(b). Hence X0 is P1 glued to itself along two points, 0 and ∞.

Figure 5 is a visual depiction of Construction 3.3. By considering the maximal cones of the
normal fan of Figure 4, we see that the universal cover Y (Cone(T )) → ∆u of the Tate curve
may be constructed as an infinite union of copies of C2:

Y (Cone(T )) =
⋃
n∈Z

C2
(xn,yn)

where the gluings are xn+1 = y−1
n and yn+1 = xny

2
n. The map to Cu is given on local charts by

u = xnyn and respects the gluings. Finally, the Z-action is (xn, yn) 7→ (xn+1, yn+1).
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Figure 4. Bending complex of the Tate curve in R/Z. The integer 1 indicates
the bending parameter, see Definition 3.17.

Figure 5. Top left: Universal cover of the Tate curve. Inverse image of ∆∗
u

depicted in red, with embedding into (C∗)2, in grey. In the toroidal extension
Y (Cone(T )), the fiber over 0 ∈ ∆u in blue is an infinite Z-periodic quilt of toric
varieties, given by gluing an infinite chain of P1s. A Z-orbit of co-characters
passing through (1, 1) ∈ (C∗)2 and forming sections over Cu is depicted in green.
Top right: The Tate curve, with general fiber C∗/uZ in red, central nodal fiber
in blue, and section in green.

Example 3.32 (Multiplication of theta functions). In general the multiplication rule for theta
functions is quite complicated, but here we check that for the central fiber u = 0 of the Tate
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curve, Example 3.31, the sections of L⊗3 define an embedding of a nodal cubic X0(b) ↪→ P2. In
addition, the computation will show that the generic fiber of ProjC[[u]]R(b) → SpecC[[u]], see
(20), is a smooth cubic plane curve, as also follows from Theorem 3.29. See Remark 3.22.

By quotienting by the ideal (u), the multiplication rule (19) significantly simplifies. Generally,
a product of two monomials lies in the ideal (u1, . . . , uk), whenever they lie over distinct domains
of linearity of the bi as then their product, viewed as a lattice point in M × Zk, lies strictly
above the graph Γ(b1, . . . , bk) by convexity. We deduce:

Lemma 3.33. Θv1 · Θv2 = 0 mod (u1, . . . , uk) whenever v1, v2 do not lie in any common
polyhedral domain of

⋃
iBend(bi) ⊂ Tg. Furthermore, if both v1, v2 lie in the interior of a

polyhedral domain of maximal dimension, then we have

Θv1 ·Θv2 = Θw1v1+w2v2
w1+w2

mod (u1, . . . , uk).

Otherwise, the multiplication rule mod (u1, . . . , uk) must take into account the fact that there
are might be multiple representatives v1, v2 of v1, v2 which lie in the same domain of linearity.
In any case, we may apply this comment and Lemma 3.33 to the weight 3 theta functions of
Example 3.31. We deduce the following multiplication rules mod u:

Θ3
0/3 = Θ0/9 + 3Θ3/9 + 3Θ6/9 Θ3

1/3 = Θ3/9

Θ2
0/3Θ1/3 = Θ1/9 + 2Θ4/9 +Θ7/9 Θ2

1/3Θ2/3 = Θ4/9 Θ0/3Θ
2
1/3 = Θ2/9 +Θ5/9

Θ2
0/3Θ2/3 = Θ2/9 + 2Θ5/9 +Θ8/9 Θ1/3Θ

2
2/3 = Θ5/9 Θ0/3Θ

2
2/3 = Θ4/9 +Θ7/9

Θ0/3Θ1/3Θ2/3 = Θ3/9 +Θ6/9 Θ3
2/3 = Θ6/9

as only 0/3 ∈ 1
3M/M ⊂ R/Z lies in multiple domains of linearity of b.

These are the ten cubics in Sym3H0(X0(b),L⊗3), and there is indeed one linear relation:

Θ0/3Θ1/3Θ2/3 = Θ3
1/3 +Θ3

2/3 mod u,

which gives the projective equation {xyz = x3+y3} ⊂ P2 of a cubic curve, with a simple node at
[0 : 0 : 1]. Computing the expansion of theta products rather over C[[u]]/(u2), one additionally
sees that the local equation of the node in the total space is xy = u and hence the general fiber
of X(b)→ ∆ is a smooth elliptic curve.

Example 3.34 (Theta graph, 1-parameter). Now consider the 1-parameter Mumford degener-
ation (T2, b) corresponding to the PL function

b(m1,m2) = r1
m2

1 −m1

2
+ r2

m2
2 −m2

2
+ r3

(m1 +m2)
2 − (m1 +m2)

2

on M = Z2 where (r1, r2, r3) ∈ N3 is some fixed vector. Then b is convex and the boundary of
Γ is depicted in Figure 6.
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Figure 6. The graph of b over MR = R2, for values r1 = r2 = r3 = 1.

Figure 7. Bending complex of b in T2.

We have, for instance, the weight 1 theta function

Θ(0/1, 0/1)(z1, z2, u) = · · ·+ z−1
1 z12 ur1 + z01z

1
2 u0 + z11z

1
2 ur3

+ z−1
1 z02 ur1+r3 + z01z

0
2 u0 + z11z

0
2 u0

+ z−1
1 z−1

2 ur1+r2+3r3 + z01z
−1
2 ur2+r3 + z11z

−1
2 ur2 + · · ·

e.g. since b(−1,−1) = r1 + r2 + 3r3. The bending complex of b is depicted in Figure 7. The
associated bilinear form has Gram matrix

B = r1

(
1 0

0 0

)
+ r2

(
0 0

0 1

)
+ r3

(
1 1

1 1

)
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Figure 8. Fundamental domain for the ΛB-action on R2, (r1, r2, r3) = (3, 2, 1),
and tiling T , arising from slicing the normal fan at height 1.

and the tiling T is depicted in Figure 8.
To produce the universal 1-parameter Mumford degeneration, requires twisting the construc-

tion by a ∈ Sym2×2(C∗)/uB ≃ (C∗)2.

Example 3.35 (Theta graph, 3-parameter). We now modify the previous example, by instead
taking a 3-parameter Mumford degeneration for (T2, b1, b2, b3) where

b1(m1,m2) :=
m2

1 −m1

2
, b2(m1,m2) :=

m2
2 −m2

2
, b3(m1,m2) :=

(m1 +m2)
2 − (m1 +m2)

2
.

This example is originally attributed to Deligne [44, Sec. 7]; called by Mumford the “keystone”
of the compactification of A2. The figure is similar to Figure 6, but we now use three different
colors, to indicate the different bending loci Bend(bi), for i = 1, 2, 3. See Figure 9.

The theta function of weight 1 is

Θ(0/1, 0/1)(z1, z2, u1, u2, u3) = · · ·+ z−1
1 z12u

1
1u

0
2u

0
3 + z01z

1
2u

0
1u

0
2u

0
3 + z11z

1
2u

0
1u

0
2u

1
3

+ z−1
1 z02u

1
1u

0
2u

1
3 + z01z

0
2u

0
1u

0
2u

0
3 + z11z

0
2u

0
1u

0
2u

0
3

+ z−1
1 z−1

2 u11u
1
2u

3
3 + z01z

−1
2 u01u

1
2u

1
3 + z11z

−1
2 u01u

1
2u

0
3 + · · · .

Note that, upon restriction to the co-character SpecC[[u]] ⊂ SpecC[[u1, u2, u3]] defined by
(u1, u2, u3) = (ur1 , ur2 , ur3) with (r1, r2, r3) ∈ N3, we get Θ(0/1, 0/1)(z1, z2, u) from Example



40 ENGEL, DE GAAY FORTMAN, AND SCHREIEDER

Figure 9. Bending complexes of b1, b2, b3 in T2, in red, green, and blue, re-
spectively. The integers are the bending parameters of b1, b2, and b3.

3.34, and indeed, the multivariable Mumford construction restricts to a 1-parameter one along
this co-character, and B = r1B1 + r2B2 + r3B3.

To understand the fibers of X(b1, b2, b3) = X → ∆3 over the various coordinate subspaces,
we refer to Figure 10. By Proposition 3.28, the polytopes of the components of the fiber over
(u1, u2, u3) ∈ ∆3 of the Mumford construction can be read off from the bending loci of the bi
for which V (ui) = 0. The fiber over the origin is the union

X(0,0,0) = P2 ∪△ P2

of two copies of P2 along a triangle of lines, so that the intersection complex is the upper left
of Figure 10. The limit of the theta divisor is the union of two lines

V (Θ(0/1, 0/1)) ∩X(0,0,0) = ℓ1 ∪ ℓ2 ⊂ P2 ∪△ P2.

The fiber X(0,0,u3) over a point on the u3-axis is normalized by the square (P1 × P1,□) and
results from gluing two sections (the top and bottom of the square) and two fibers (the left
and right of the square). The gluing isomorphisms are u3 ∈ C∗, u−1

3 ∈ C∗. The theta divisor
V (Θ(0/1, 0/1)) lies in the linear system of O(1, 1) on the normalization, and glues to a Cartier
divisor on the non-normal surface X(0,0,u3). The fibers over the u1- and u2-axes of ∆3 are
similar; the intersection complexes are in the top row of Figure 10.

Over a general point of a coordinate hyperplane V (u1), the fiber X(0,u2,u3) is the result of
gluing a P1-bundle PE(O ⊕ M) over an elliptic curve E to itself, M ∈ Pic0(E), by gluing
the 0- and ∞-sections of the bundle by a translation depending on M. Fibers over the other
coordinate hyperplanes are similar, and the corresponding intersection complexes are the first
three figures in the second row of Figure 10. Finally, the general fiber X(u1,u2,u3) over a point
(u1, u2, u3) ∈ (∆∗)3 is a smooth, principally polarized abelian surface with V (Θ(0/1, 0/1)) the
theta divisor.

3.6. Base change and Veronese embedding. Let X(b1, . . . , bk) → ∆k be a Mumford con-
struction on a collection of convex sections bi ∈ H0(Tg,ZPL/ZL), see Construction 3.21, and
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Figure 10. Intersection complexes of the fibers of the Mumford construction.

consider a monomial base change, of the form ∆n → ∆k, such that the pullback of coordinates
ui are of the form

u1 = wr11
1 · · ·w

r1n
n =: wr⃗1 ,

· · ·

uk = wrk1
1 · · ·wrkn

n =: wr⃗k .

(26)

Proposition 3.36. The base change of the Mumford degeneration X(b1, . . . , bk)→ ∆k along a
monomial base change ∆n → ∆k is the Mumford construction X(c1, . . . , cn) → ∆n associated
to the convex PL functions

cj := r1jb1 + · · ·+ rkjbk.

Proof. Substituting (26) into the defining equations for Θv in (18), we see that the result is
again a Mumford degeneration X(c1, . . . , cn)→ ∆n where cj has the stated formula. □

A simple case is exhibited by Examples 3.34, 3.35, where we make the monomial base change
∆→ ∆3, w 7→ (wr1 , wr2 , wr3) to Example 3.35, to get Example 3.34.

Remark 3.37. A base change ∆k → ∆k ramified over the coordinate hyperplane V (ui) to
order ri is given by ui = wri

i and we have the simpler relation ci = ribi.

We now consider the effect of replacing L with dL for some positive multiple d > 0 of the
principal polarization. Equivalently, we are taking the Veronese subring

R(b1, . . . , bk)
(d) ⊂ R(b1, . . . , bk)

consisting of the theta functions of weights w divisible by d. The passage to the Veronese
subring suggests also a natural generalization of Construction 3.21, which allows us to relax the
restrictive dicing condition:
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Construction 3.38. Consider convex sections

bi ∈ H0(Tg, 1
dZPL/

1
dZL)

for some positive integer d, see Definition 3.18. Then, we may define theta functions similarly
to formula (18), but only for the weights w divisible by d. Assuming that the bi are 1

d -dicing
on Tg (Def. 3.25), we may deduce from Remark 3.24 that dL lifts to an ample line bundle on
the resulting degeneration, which we denote by

X(d | b1, . . . , bk)→ ∆k.

While the general fiber of the degeneration still admits a principal polarization L, only dL

extends to a line bundle on the total space, in general.
In terms of the polytope, we still take the overgraph Γ = Γ(b1, . . . , bk) + (R≥0)

k, which is
now only a 1

d(M× Zk)-integral polyhedron. Then, as in Remark 2.21, we consider Cone(Γ) ⊂
(MR×Rk)×R but one only considers monomials, and their M-averagings (25) to theta functions,
lying in (M× Zk)× dZ. The general fiber of the Mumford construction is still the quotient by
M of N⊗ C∗; in particular, the exact sequence (10) still holds. ♣

Remark 3.39. The isomorphism type of the degeneration X(d | b1, . . . , bk) → ∆k does not
depend on the lifts bi of bi but the choice of origin section does, since different lifts of bi shift
the normal fan, and thus affect which subtorus forms the origin section, see Remark 3.9. The
same applies to Construction 3.26—to produce an extension of the universal family over ÃB

g

requires a choice of lift of cone b ⊂ H0(Tg, 1dZPL/
1
dZL) into H0(MR,

1
dZPL) as the gluing with

the universal family X̃g → Ãg depends on a choice of origin section.

Example 3.40 (Base change and resolution of the Tate curve). Consider the following Mumford
constructions of degenerating elliptic curves:

(1) The Tate curve, i.e. Example 3.31.
(2) The order 3 base change u = w3 to Example 3.31.
(3) The order 3 Veronese embedding of (2).

These are encoded respectively by the following data:

(1) R/Z, b(1) = 1
2(m

2 −m) on m ∈ Z, d = 1.
(2) R/Z, b(2) = 3

2(m
2 −m) on m ∈ Z, d = 1.

(3) R/Z, b(3) = b(2), d = 3 (see the outer edge of Figure 11).

The total space of the Tate curve X(b(1)) is smooth and the central fiber X0(b
(1)) is an

irreducible nodal curve (i.e. of Kodaira type I1). The total space of the base change X(b(2)) is
singular, with an A2-singularity at the node point of the irreducible central fiber. The spaces
X(3 | b(2)) ≃ X(b(2)) are isomorphic degenerations over ∆, with the former polarized by 3L

rather than L.
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Figure 11. Above: order 3 base change of the Tate curve, with polarization
O(3), and resolution. Following Remark 3.38, grid points are (13Z)

2. Below:
normal fan of the order 3 base change, and of the resolution.

To resolve the total space X(b(2)), we take the minimal resolution X̃ → X(b(2)), which
resolves the A2-singularity to a chain of two (−2)-curves E1 + E2. Then the central fiber
X̃ → ∆ is an I3-type Kodaira fiber, i.e. a wheel of P1s of length 3.

To realize this resolution as a polarized resolution, first, we pull back 3L to X̃. It has
multidegree (3, 0, 0) on the three components of the wheel. Now, we twist, defining

L̃ := 3L− E1 − E2.

The resulting line bundle has multidegree (1, 1, 1) on the wheel, and the overgraph of the
Mumford degeneration defining (X̃, L̃)→ ∆ is shown in gray in Figure 11.

On the 3Z-prequotient, this is the usual blow-up operation on polytopes of polarized toric
varieties, which cuts a corner off the polytope, whose size depends on the chosen polarization on
the blow-up. The cut corners are depicted in green in Figure 11. The normal fans are depicted
in the bottom of Figure 11. We see that, indeed the normal fan for X̃ = X(3 | 1

3b
(1)(3x))

is a 3Z-invariant refinement of the normal fan to X(b(2)). Thus, there is a 3Z-equivariant
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Figure 12. Left-to-right: the Tate curve, the order 3 base change of the Tate
curve, the order 3 base change of the Tate curve plus 3rd Veronese embedding,
and its polarized resolution. Integers at blue vertices are the bending parameters.

toric morphism between the corresponding toric varieties, descending on quotients to give the
minimal resolution.

In terms of T1 and the bending loci, the various operations are depicted in Figure 12.

4. Regular matroids

We now discuss the construction of Mumford degenerations associated to regular matroids.

4.1. Matroids, graphs, and quadratic forms.

Definition 4.1. A matroid R = (R,E) is a finite set E, together with a collection R of
independent subsets of E, satisfying the following axioms:

(1) The empty set is independent.
(2) Any subset of an independent set is independent.
(3) If I, J ⊂ E are independent sets with |I| > |J |, then there is an element i ∈ I \ J for

which J ∪ {i} is independent.

The set E is called the ground set of R.

These axioms encapsulate the concept of linear independence of a collection of vectors in
a vector space. A basis is a maximal independent subset E′ ⊂ E, and a circuit is a minimal
dependent set. Note that all bases of R have the same cardinality by Def. 4.1(3); this cardinality
is called the rank of R.

The dual matroid R∗ is a matroid on the same ground set E, whose bases are the complements
of bases of R. A circuit of R∗ is a cocircuit of R.

Definition 4.2. A realization of R over the field F is a map ϕ : E → Fg to an F-vector space
for which the independent sets E′ ⊂ E are exactly those for which {ϕ(i)}i∈E′ are linearly
independent. A matroid R is regular if it admits a realization over any field. An integral
realization of a regular matroid is a map ϕ : E → N to a free Z-module N which gives a
realization of R upon base change N⊗Z F to any field F.
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We will always assume that ϕ(E) generates the lattice N. In particular, the rank of R agrees
with the rank of N.

By a theorem of Tutte [63], every regular matroid can be defined by a totally unimodular
matrix, that is, a matrix all of whose minors (in particular, all entries) have determinant in
{±1, 0}. Then, an integral realization of the matroid arises by considering the set of column
vectors. More generally, any unimodular matrix—an integer entry matrix whose maximal minors
have determinant in {±1, 0}—defines an integral realization of a regular matroid [65, Ch. 3,
Thm. 3.1.1]. Equivalently, the lattice spanned by any collection of columns is saturated.

Example 4.3. Let G be a graph and let E = E(G) be its set of edges. Choose an orientation
on the edges. We have an inclusion H1(G,Z) ⊂ ZE as every homology class γ ∈ H1(G,Z) can
be viewed as a Z-linear combination of directed edges.

Let ei denote the basis vector of ZE corresponding to the i-th edge and let x̃i := e∨i ∈ (ZE)∨ be
the corresponding coordinate function. By restriction, we get a linear function xi ∈ H1(G,Z)∨ ≃
H1(G,Z). The cographic matroid M∗(G) of G, on the ground set E, has realization

E → H1(G,Z),

i 7→ xi.

The graphic matroid M(G) is the dual matroid, and has realization

E → ZE/H1(G,Z),

i 7→ ei

where ei is the image of ei under the natural quotient map. Its rank is |E(G)| − rk(H1(G,Z)).
The graphic and cographic matroids of G are sometimes called the cycle and bond matroids of
G, respectively, in the matroid literature.

Remark 4.4. Let T ⊂ E be a spanning forest of G. Associated to T is a basis of H1(G,Z)
indexed by the edges in E \ T : each edge i ∈ E \ T completes a unique closed circuit Ci of the
graph G whose edges lie in T ∪ {i}. These closed circuits determine a Z-basis of H1(G,Z) and
form the circuits of the graphic matroid M(G).

Let g = g(G) be the genus of the graph and k = |E| be the number of edges. Then, in this
basis, the integral realization of the cographic matroid M∗(G) in Example 4.3 is a g× k matrix
of the form M∗

G = (Idg |P ) where P is a matrix of 0’s and ±1’s, and whose i-th row consists of
the directed edges of T involved in the circuit Ci.

Example 4.5. If G is taken to be the theta graph (see Figure 13), with (g, k) = (2, 3), and the
spanning tree T is {e3} ⊂ E, then

M∗
G =

(
1 0 1

0 1 1

)
because the circuits completed by e1 and e2 are, respectively, e1 + e3 and e2 + e3.
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Figure 13. The theta graph, with spanning tree in red.

Definition 4.6. Let i 7→ xi ∈ N ≃M∨ be an integral realization of a regular matroid R. Then
the associated matroidal cone BR is the R≥0-span of x2

i ∈ Sym2M∨.
For example, let G be a graph. Its cographic cone BM∗(G) is the cone of symmetric, positive

semi-definite bilinear forms on H1(G,Z) given by

BM∗(G) : = R≥0{x2
i : i ∈ E(G)}

= {M∗
GD(M∗

G)
T : D diagonal with Di ≥ 0} ⊂ P+

g .

See Alexeev-Brunyate and Melo–Viviani for analyses of which matroidal cones appear in
various toroidal compactifications of Ag [5, 41].

Example 4.7 (Seymour-Bixby [58, 13]). Consider the totally unimodular matrix

R10 =


1 0 0 0 0 −1 1 0 0 1

0 1 0 0 0 1 −1 1 0 0

0 0 1 0 0 0 1 −1 1 0

0 0 0 1 0 0 0 1 −1 1

0 0 0 0 1 1 0 0 1 −1

 .

Then, the columns of R10 define a regular matroid on 10 elements in Z5. We have already seen
this matroid, which can be identified with the 10 vanishing cycles γi ∈ grW−2VZ ≃ Z5 of the
nodes of the Segre cubic threefold, VZ = H3(Y∗,Z)(−1), see Example 2.16.

The associated matroidal cone is

BR10
= R≥0{x2

1, x
2
2,x

2
3, x

2
4, x

2
5, (x5 − x1 + x2)

2, (x1 − x2 + x3)
2,

(x2 − x3 + x4)
2, (x3 − x4 + x5)

2, (x4 − x5 + x1)
2} ⊂ Sym2M∨ ⊗ R

where xi for i = 1, . . . , 5 are the coordinates on M ≃ Z5 given by the first five columns of R10. A
particularly nice realization of R10 over F5

2 is as the 10 vectors in (F2)
⊕6/F2⟨1, 1, 1, 1, 1, 1⟩ which

have exactly three nonzero entries, cf. Example 2.16. In this realization, the full automorphism
group S6 ≃ Aut(R10) is readily visible.

Remark 4.8. Examples 4.3 and 4.7 are essentially different: the matroid R10 is not isomorphic
to M(G) or M∗(G), for any graph G, see e.g. [58].
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Definition 4.9. Let f∗ : X∗ → Y ∗ be a smooth, projective family of PPAVs over a smooth
quasiprojective base Y ∗, and let Y ∗ ↪→ Y be an snc extension. We say that the morphism f∗

is matroidal with respect to the extension Y if:

(1) the monodromy at the boundary Y \ Y ∗ is unipotent, and
(2) the monodromy cones at all snc strata of Y \ Y ∗ are matroidal cones.

Matroidal morphisms exist, in view of the following result:

Proposition 4.10. Let (R,E) be a regular matroid of rank g on a k element set E = {1, . . . , k},
with integral realization E → N = M∨, i 7→ xi, and let (r1, . . . , rk) ∈ Nk be a vector of positive
integers. Then there is a smooth projective family f∗ : X∗ → Y ∗ of g-dimensional PPAVs over
a smooth quasiprojective base of dimension k, such that the following hold:

(1) There is a smooth extension Y ∗ ⊂ Y with snc boundary divisor D = Y \ Y ∗ and an
embedded polydisc ∆k ⊂ Y such that the restriction of D to ∆k agrees with the union
{u1 · · ·uk = 0} of the coordinate hyperplanes.

(2) Consider the base change X∗
(∆∗)k

→ (∆∗)k and let t ∈ (∆∗)k. Then there is an isomor-
phism grW0 H1(Xt,Z) ≃M under which the monodromy bilinear form Bi around the i-th
coordinate hyperplane (Def. 2.6) is given by rix

2
i .

Proof. Apply Corollary 2.30 to the symmetric bilinear forms Bi = rix
2
i ∈ P+

g ∩Symg×g(Z). □

In the following sections, we will study regular extensions f : X → Y of matroidal morphisms.

4.2. Mumford degenerations associated to regular matroids.

Definition 4.11. A hyperplane arrangement is a finite collection {H i}i∈I of torsion translates
H i ⊂ Tg = MR/M of codimension 1 subtori. Equivalently, it is a finite collection {Hi}i∈I
where Hi is the union of all M-translates of an affine linear hyperplane in MR defined over Q.

Let x1, . . . ,xk ∈ N be a finite collection of vectors, rankN = g, giving an integral realization
of a regular matroid R. Each xi defines a family of parallel hyperplanes

Hi := {m ∈MR : xi(m) ∈ Z} ⊂MR.(27)

Then {H1, . . . ,Hk} defines a hyperplane arrangement, see Definition 4.11. Moreover, Hi is the
bending locus of the convex ZPL function bi on MR that satisfies

bi(m) =
xi(m)2 − xi(m)

2
for m ∈M.

Note that bi descends, as a convex section bi ∈ H0(Tg,ZPL/ZL). The regularity of the matroid
implies that the bi are dicing, i.e. the polytopes cut by the union of hyperplanes HR :=

⋃k
i=1Hi

have integral vertices. See Erdahl–Ryshkov [28].
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Definition 4.12. We define the matroidal Mumford construction X(R)→ ∆k to be the Mum-
ford construction X(b1, . . . , bk) → ∆k associated to the collection (Tg, b1, . . . , bk) of sections
bi ∈ H0(Tg,ZPL/ZL) above, defined by the regular matroid R.

Then k is the size of the ground set of R while the dimension g of the fibers is the rank of R.
By construction, the monodromy cone of the matroidal Mumford construction on R is given by
the matroidal cone BR ⊂ P+

g because the bilinear form Bi associated to bi is Bi = x2
i .

Example 4.13 (Cographic matroids). We have implicitly seen an important matroid, realized
by the vanishing cycles associated to a nodal projective curve C0 with k nodes, as in Example
2.15. We aim to

(1) identify the matroid realized by the vanishing cycles as the cographic matroid M∗(G)

where G := H1(Γ(C0),Z) is the dual graph of the nodal curve, and
(2) under the simplifying assumption that the normalized components of C0 have genus

zero, use this identification and Construction 4.12 to compactify the relative Jacobian
of the universal deformation π : C → DefC0 ≃ ∆3g−3 ≃ ∆k ×∆(3g−3)−k.

We begin with (1). Let Ct be a smooth fiber nearby C0. Let E = {1, . . . , k} be the set of
nodes of C0 and let γ1, . . . , γk ∈ H1(Ct,Z) be the corresponding vanishing cycles, unique up to
sign. This realizes a matroid on the ground set E. A choice of sign for each γi is equivalent to
a choice of orientation of the edges of G = Γ(C0). Using the intersection pairing and Poincaré
duality on Ct, we may view each γi as a linear form on H1(Ct,Z) ≃ H1(JCt,Z). This linear
form vanishes on W−1 and hence descends to a linear form on grW0 H1(Ct,Z) ≃ grW0 H1(JCt,Z).

We also have an identification grW0 H1(Ct,Z) ≃ H1(Γ(C0),Z); thus γi is identified with the
linear form on H1(G,Z) giving the coordinate i 7→ xi = e∨i ∈ H1(G,Z) of the oriented edge
ei ∈ E(G). So the matroid realized by the k vanishing cycles in Ct is isomorphic to the cographic
matroid M∗(G). Conversely, the cographic matroid M∗(G) associated to any graph G arises
this way, because we can construct a nodal projective curve C0 whose dual complex is G.

We now compactify the relative Jacobian fibration Jπ◦ : JC◦ → (∆∗)k × ∆(3g−3)−k of the
punctured family π◦ : C◦ → (∆∗)k of smooth curves, as in (2). So take M = H1(G,Z) and
N = H1(G,Z) and apply the universal form of the matroidal Mumford construction of Definition
4.12. If no xi = 0 nor xi = ±xj for i ̸= j (in matroidal language: M∗(G) contains no circuits
of length ≤ 2), we get an extension

Xuniv(M∗(G))→ ÃBM∗(G)
g

of the universal family. Otherwise, we only get a degeneration

Xuniv
◦ (M∗(G))→ (∆k)univ

where (∆k)univ → (C∗)(
g+1
2 )−ℓ is a k-dimensional polydisk bundle for some ℓ < k, for which the

classifying map (∆k)univ → Ag loses dimension. So assume the former. It follows then from
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Proposition 2.27 that the Torelli map extends to a morphism

DefC0 ≃ ∆k ×∆(3g−3)−k ↪→ ÃBM∗(G)
g .

Then the pullback of Xuniv(M∗(G)) defines an extension of the relative Jacobian fibration

Jπ : JC → ∆k ×∆(3g−3)−k

where {0}×∆(3g−3)−k → {0}× (C∗)(
g+1
2 )−k maps the locally trivial deformations of C0 into the

deepest toroidal stratum ÃBM∗(G)
g .

Example 3.35 is an example of a matroidal Mumford construction on the cographic matroid
of the theta graph (Example 4.5), where C0 = P1∪{0, 1,∞}P1 is the union of two smooth rational
curves along three points. The dual graph Γ(C0) is the theta graph, as depicted in Figure 13.

Example 4.14 (Matroidal Mumford degeneration on R10). Another example comes from the
Seymour–Bixby matroid R10 (Example 4.7) which gives a degeneration X(R10)→ ∆10 of PPAVs
of dimension 5 over a 10-dimensional polydisk. To produce a universal degeneration whose
monodromy cone is BR10

we must twist by a ∈ (C∗)5 (here 5 = 15− 10 and 15 = dimA5). The
resulting universal Mumford degeneration is an extension of the universal family

Xuniv(R10)→ Ã
BR10
5 .

If π : Y → DefY0 ≃ ∆10 is the universal deformation of the Segre cubic threefold (Example
2.16), there is a morphism DefY0 → Ã

BR10
5 transversely slicing the deepest toroidal boundary

stratum (C∗)5. The intersection is transverse because the monodromy about each coordinate
hyperplane is Bi = x2

i—thus, in toroidal charts of ÃBR10
5 , the period map is approximated by

a translate of a subtorus which transversely slices the deepest boundary stratum. The pullback
of Xuniv(R10) defines an extension IJπ : IJY → ∆10 of the relative intermediate Jacobian
fibration IJπ◦ : IJY ◦ → (∆∗)10 over the smooth locus.

Remark 4.15. By [41, Lem. 4.0.5, Cor. 4.0.6], we do not need to pass to some étale cover
Ãg → Ag to produce the toroidal extension associated to a matroidal cone—up to quotienting
by the group of symmetries of R and identifying some faces, every matroidal cone BR on a
regular matroid R with no loops or parallel edges (simple regular matroids in loc. cit.) embeds
into (Ag)trop as in Example 2.25. Indeed, there is a universal matroidal extension Ag ↪→ Amat

g

whose fan is the union of all matroidal cones, on regular matroids of rank ≤ g, with no loops or
parallel edges. By [41, Thm. A], Amat

g is the toroidal extension of the maximal common subfan
of the first and second Voronoi fans.

4.3. Shifted and transversely shifted matroidal degenerations. We describe here a mod-
ification of the matroidal Mumford construction of Definition 4.12 which produces a regular
total space; this property is quite special, and under some additional hypotheses, characterizes
Mumford degenerations with regular total space.
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Construction 4.16 (Shifted matroidal degenerations). Suppose that E → N, i 7→ xi gives
an integral realization of a regular matroid. Consider the family of parallel hyperplanes Ho

i =

{m ∈MR : xi(m) ∈ Z} ⊂MR for i ∈ E. Then, all Ho
i intersect at all lattices points M, or in

the quotient Tg = MR/M, at the origin. Thus, we consider the shifted hyperplanes

Hi := {m ∈MR : xi(m) ∈ ϵi + Z}

for ϵi ∈ 1
dZ. For sufficiently large d, it is possible to choose values of ϵi for which this shifted

hyperplane arrangement {H1, . . . ,Hk} satisfies the following additional property:

Definition 4.17. A hyperplane arrangement {Hi}i∈I is transversal if at any intersection point
p ∈

⋂
i∈I Hi the normal vectors of Hi for i ∈ I are linearly independent.

Associated to Hi (transversal or not) we define a piecewise linear function bi : MR → R by
the properties that:

(1) bi(m) := 1
2(xi(m−m0)

2 − xi(m−m0)) for any m ∈ m0 +M where m0 ∈MR is any
point for which xi(m0) = ϵi and

(2) Bend(bi) = Hi is the shifted family of hyperplanes.

The associated bilinear forms Bi = x2
i are the same as for the unshifted case.

While the function bi is not integer valued on integer points, it is 1
d -integer valued on 1

d -
integral points. Thus, by Construction 3.38, we may take a Mumford degeneration

f : X(d | b1, . . . , bk)→ ∆k

whose monodromies Bi are the same as those of the matroidal Mumford degeneration. More
generally, we have, by Construction 3.26, a universal form Xuniv(d | b1, . . . , bk)→ ÃB

g . We may
further generalize this set-up:

Definition 4.18. Let R be a regular matroid. A shifted matroidal degeneration on R is a
Mumford construction X(d | b1, . . . , bk) → ∆k for which the bending locus of bi is a union of
parallel hyperplanes in MR whose primitive normal vectors xi ∈ N give an integral realization
of R. We furthermore call a shifted matroidal degeneration transversely shifted if

(1) the hyperplane arrangement {Bend(bi) : i = 1, . . . , k} is transversal, and
(2) the bending parameter of bi along each hyperplane is 1.

We remark that Definition 4.18 is well-defined, independent of the choice of primitive normal
vector xi ∈ N, which is only unique up to sign. Closely related constructions go by the name
“multiplicative hypertoric variety” in more representation-theoretic literature, see especially [22,
Sec. 8.3] (for the cographic case), generalizing the “additive” case [8, 12, 34]. ♣

See the right hand sides of Figures 14, 16 for examples of transversely shifted arrangements.

Notation 4.19. The bending locus Bend(bi) can be viewed as a multiset {H(1)
i , . . . ,H

(ri)
i } of

rational translates of the hyperplane normal to xi—a hyperplane H appears m times in the
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Figure 14. Left: 2nd Veronese embedding of the matroidal degeneration of the
theta graph. Right: a shifted version. Grid points are (12Z)

2. The integers are
the multiplicities of given hyperplane in the arrangement H .

multiset if the bending parameter of bi along H is m ∈ N. Then, we assemble the hyperplane
arrangement into a single symbol

H := {H(1)
1 , . . . ,H

(r1)
1 , . . . ,H

(1)
k , . . . ,H

(rk)
k }

where H
(j)
i is the set of M-translates of a single hyperplane normal to xi. To indicate the

relation to the regular matroid R, we re-notate the Mumford construction of Definition 4.18, or
the universal version, as

X(R,H )→ ∆k or Xuniv(R,H )→ ÃB
g .

Example 4.20 (Transversely shifted matroidal degeneration for the theta graph). Beginning
with the standard matroidal degeneration X(M∗(G)) → ∆3 associated to the theta graph G

(Example 3.35), take the degree 2 Veronese embedding. The resulting polyhedral decomposition
of T2 and bending loci are depicted in the top left of Figure 14. Now consider the shifts of the
families of hyperplanes Ho

1 , Ho
2 , Ho

3 (of colors red, green, blue, respectively) of the standard
arrangement for M∗(G), by (ϵ1, ϵ2, ϵ3) = (0, 0, 12). The result is a transversal arrangement
H = {H1, H2, H3} with H1 = Ho

1 , H2 = Ho
2 , H3 = Ho

3 + (12 , 0).
Applying Proposition 3.28, it can be seen that the central fiber of the left-hand Mumford

degeneration in Figure 14 is the union of two copies of P2, both polarized by OP2(2). Similarly,
the central fiber of the righthand Mumford degeneration X(M∗(G),H ) → ∆3 is the union
of three surfaces: Two copies of P2, both polarized by OP2(1), and a Cremona surface V :=

Blp1,p2,p3(P2), polarized by the anticanonical divisor −KV .

Example 4.21. Consider the regular matroid defined by the matrix1 0 0 1

0 1 0 1

0 0 1 1

 .
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Figure 15. Dual complex (edges colored) of the righthand shifted arrangement
in Figure 14. It is a tiling of a 2-torus by cubes.

Figure 16. Left: Oriented genus 3 graph with spanning tree in red. Right:
Transversely shifted hyperplane arrangement in T3.

It is the cographic matroid of the oriented graph G depicted in the left of Figure 16. Letting
xi ∈ H1(G,Z) for i = 1, 2, 3, 4 be the linear forms corresponding to the four oriented edges of
G, we form a transversely shifted matroidal degeneration X(M∗(G),H ) where

H = {H(1)
1 , H

(2)
1 , H

(3)
1 , H

(1)
2 , H

(2)
2 , H

(3)
2 , H

(4)
2 , H

(1)
3 , H

(2)
3 , H

(1)
4 }.
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There are, respectively, 3, 4, 2, 1 hyperplanes perpendicular to x1 = (1, 0, 0), x2 = (0, 1, 0),
x3 = (0, 0, 1), x4 = (1, 1, 1). These hyperplanes are, respectively, depicted in red, blue, green,
and purple in Figure 16.

5. Nodal and semistable morphisms over higher-dimensional bases

Definition 5.1. Let Y be a smooth analytic space, and let D ⊂ Y be an snc divisor, D =
⋃

iDi.
Let f : X → Y be a morphism of analytic spaces. We say that f is

(1) D-nodal if for every point p ∈ X, there are analytic coordinates in which the morphism
f is of the form ∏

i∈I
{xiyi = ui} ×∆j+k →

∏
i∈I

∆ui ×∆j

where ui are local equations for some components Di ⊂ D, i ∈ I and ∆j+k → ∆j is the
projection to the first j coordinates,

(2) nearly D-nodal if we rather have a normal form of shape∏
i∈I
{x(1)i y

(1)
i = · · · = x

(ni)
i y

(ni)
i = ui} ×∆j+k →

∏
i∈I

∆ui ×∆j ,

(3) D-semistable if we have∏
i∈I
{x(1)i · · ·x

(ni)
i = ui} ×∆j+k →

∏
i∈I

∆ui ×∆j .

In all three cases, if we furthermore have that the irreducible components Vi ⊂ Xi of the generic
fiber of f over each component of Di are smooth, we use the term strict.

This definition works equally well in the algebraic category, replacing ∆ with A1 and analytic-
local charts with étale-local charts. In the cases where f is D-nodal or D-semistable, the total
space X is smooth, but if some ni ≥ 2 for a nearly D-nodal morphism, then X is singular.

Remark 5.2. The notion of a D-semistable morphism is already known in the literature by the
term semistable morphism, and when context is clear, we also drop the D. By Adiprasito–Liu–
Temkin’s resolution [2] of the conjecture of Abramovich–Karu [1], for every dominant morphism
f : X → Y , there is an alteration Y ′ → Y and a modification X ′ → X×Y Y ′ of the base change
which is D-semistable, for the discriminant divisor D.

5.1. Mumford degenerations with nodal singularities.

Proposition 5.3. Let f : X(R,H ) → ∆k be a transversely shifted matroidal degeneration.
Then, the morphism f has D-nodal singularities, where D := V (u1 · · ·uk) ⊂ ∆k is the union of
the coordinate hyperplanes. In particular, X(R,H ) is smooth. The same results hold for the
morphism funiv : Xuniv(R,H )→ ÃB

g with D the toroidal boundary. Conversely, any Mumford
degeneration with D-nodal singularities is a transversely shifted matroidal degeneration on some
regular matroid R.
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Proof. First we prove the forward direction.
Since the action of dM on the universal cover of the Mumford degeneration is free, it suffices

to check the statement on this universal cover. We first show that every cone of the normal fan
to Γ is a standard affine cone (i.e. integral-affine equivalent to Ni for some i).

The cones of the normal fan are in bijection with the faces of Γ. Let F be a polyhedral face
in the decomposition

⋃k
i=1Hi of Tg. Then F also defines a face of Γ by evaluating (b1, . . . , bk)

on F . Conversely, all faces of Γ contain such a face in their closure. So it suffices to examine
the normal fan of the faces adjacent to F .

By the transversality hypothesis, F is locally described as an intersection
⋂

i∈I Hi for which
xi ∈ N for i ∈ I are linearly independent. Furthermore, the normal vectors xi for i ∈ I generate
a standard affine cone in N, because i 7→ xi is an integral realization of a regular matroid, and
so the sublattice generated by them is saturated.

By hypothesis, the bending parameter of bi is 1 across any hyperplane Hi with normal vector
xi. Thus, after an integral change of basis and translation of F to the origin, bi is locally
expressible as

bi(m) =

{
0 if xi(m) ≤ 0

xi(m) if xi(m) ≥ 0
(28)

on MR for i ∈ I = {1, . . . , k}, k ≤ g. Combining all the above considerations, we deduce that
the local monoid MF of the face F is a product

MF =
∏
i∈I

(Z≥0)
2 ×

∏
i∈Basis\I

Z×
∏
E\I

Z≥0 ⊂M× Zk ≃ Zg+k

where the first factors, indexed by i ∈ I, correspond to two vectors along the graph of bi in the
two (local) domains of linearity of (28), the second factors go along the face F , and the third
factors, indexed by E \ I, are “vertical” faces, arising from the fact that we took the overgraph
Γ(b1, . . . , bk)|F + (Z≥0)

k. Note that the dimensions of the factors add up to the correct value

2|I|+ (g − |I|) + (|S| − |I|) = g + k.

The dual cone to MF is isomorphic to (Z≥0)
|I|+k.

We deduce that the cones of the normal fan are standard affine, and so X is smooth. Fur-
thermore, the morphism to the fan (R≥0)

k is, on the first factors (x, y) 7→ x+ y, on the second
factor is zero, and on the third factor, is an isomorphism to the coordinate axis indexed by the
corresponding element of E \ I. We deduce that the morphism FF → (R≥0)

k is a product of
node smoothings, with a smooth morphism, as in the definition of a D-nodal morphism. The
second statement follows.

We now prove the reverse direction. The condition that X(d | b1, . . . , bk)→ ∆k have D-nodal
singularities implies that the polyhedral complex Bend(bi) can only have codimension 1 faces.
By convexity, we deduce that Bend(bi) is a disjoint union of parallel hyperplanes Hi in Tg. At
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any face F of
⋃k

i=1Bend(bi) where these hyperplanes intersect, the normal vectors xi to the
hyperplanes must be a subset of a Z-basis of N for the normal fan to be standard affine. It
follows that any linearly independent collection of xi generate a saturated sublattice of N and
so xi define a regular matroid R. Furthermore, the fact that the normal vectors must be linearly
independent proves that the Hi define a transversal arrangement.

The same results hold for Xuniv(R,H )→ ÃB
g , which over the neighborhood (∆k)univ of the

boundary forms a locally trivial deformation of the degeneration X(R,H )→ ∆k. □

Question 5.4. A 1-parameter semistable degeneration f : X → Y which is relatively K-trivial
(i.e. KX ∼f 0) is called a Kulikov model, see Remark 3.5. Proposition 5.3 shows that it is natural
to generalize this notion to a multivariable Kulikov model—a proper, semistable, relatively K-
trivial morphism. It is unclear in what context they are guaranteed to exist. Proposition 5.3
gives nontrivial examples of such, for abelian varieties. Given a family of K-trivial varieties
f : X → Y , is there an alteration of the base Y ′ → Y and birational modification f ′ : X ′ → Y ′

of the base change, which is a multivariable Kulikov model? Do multivariable Kulikov models
exist for families of K3 surfaces?

Proposition 5.5. Suppose that every face F of a transversal arrangement H is embedded in
Tg (as opposed to immersed) for all subsets I ⊂ E. Then, every stratum of X = X(R,H ) is
smooth. In particular, f : X → ∆k is strictly D-nodal. Thus, a transversely shifted matroidal
degeneration is strictly D-nodal if and only if there are least two hyperplanes with normal vector
xi ∈ N for all i = 1, . . . , k.

Proof. It follows from the hypothesis and Proposition 3.28 that if the dM-action on the universal
cover X(S) of the Mumford degeneration identifies two points p, q ∈ X(S) lying on the same
smooth toric stratum, then p, q must lie in a subtorus (C∗)k being quotiented to an abelian
k-fold. The first part of the proposition follows.

To show the second part: Suppose that there are ri ≥ 2 hyperplanes with normal vector xi.
Let I0 be a subset of a basis, say I0 = {1, . . . , h} ⊂ {1, . . . , g} for which the span of xi for
i ∈ I is generated by the xi for i ∈ I0. Then

⋃
H∈H H is, combinatorially, a tiling of Tg by the

product of a subtorus Tg−h ⊂ Tg with some polyhedral subdivision of the tiling of Th by cubes
of size 1/r1 × · · · × 1/rh. All such cubes are embedded in Th once ri ≥ 2. □

Remark 5.6. Let H define a transversal arrangement. Then, any small rational perturbation
of the H ∈ H which keeps the combinatorics of the intersection complex

⋃
H∈H H ⊂ Tg con-

stant produces an isomorphic degeneration X(R,H )→ ∆k, since the normal fan is unchanged
by such a perturbation. Thus, the only difference between these two Mumford constructions is
the choice of polarization on the total space. More generally:

Proposition 5.7. For any arrangement H , and any sufficiently small perturbation H ′ of H ,
there is a birational morphism X(R,H ′)→ X(R,H ) over ∆k.
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Proof. The proposition follows from the fact that the normal fan associated to H ′ is a refinement
of that for H —all domains of linearity of the PL function (b1, . . . , bk) : MR → Rk bending
along H “persist” (up to a small deformation) as domains of linearity for the PL function
(b′1, . . . , b

′
k) : MR → Rk bending along H ′. Hence, any normal cone to a face of the polytope Γ

is a union of normal cones of the corresponding faces of Γ′. □

Corollary 5.8. A small, transversal perturbation H ′ of the hyperplane arrangement (27) defin-
ing the standard matroidal Mumford construction X(R) → ∆k (Def. 4.12) defines a projective
resolution of singularities X(R,H ′)→ X(R), which is D-nodal over ∆k.

Proof. The corollary follows from Propositions 5.7 and 5.3. □

5.2. Weight filtration of a semistable morphism. Throughout this section, suppose that
f : X → Y is a (strict) D-semistable, proper morphism, for an snc pair (Y,D), with X Kähler.
We fix a point 0 ∈ D and denote by Do

I the open snc stratum containing 0. Assume without
loss of generality that I = {1, . . . , k}. We also fix a base point t ∈ Y \D near 0.

Proposition 5.9. Let f : X → Y be a (strict) D-semistable morphism for an snc pair (Y,D)

and let C → (Y,D) be a pointed curve which transversely intersects the open stratum of a
component Di ⊂ D. Then the base change X ×Y C → C is a (strict) semistable degeneration.

Proof. This follows immediately from the normal form (3). □

Consider the inclusion of the nearby fiber Xt ↪→ X∆I into the restriction of X → Y to a
polydisk ∆I ∋ 0 transversely slicing the snc stratum Do

I ∋ 0. We claim:

Proposition 5.10. There is a deformation-retraction c : X∆I → X0. The fibers of ct := c|Xt

are real tori; more precisely, if p ∈ X0 lies in a product of snc strata p ∈
∏

i∈I V (x
(1)
i , · · · , x(ni)

i ),
cf. (3), then the fiber of ct is c−1

t (p) =
∏

i∈I(S
1)ni−1 where (S1)ni−1 ⊂ Xt is the vanishing torus

of the semistable degeneration x
(1)
i · · ·x

(ni)
i = ui.

It would be natural to call the retraction c the “multivariable Clemens collapse”, in analogy
with the Clemens collapse of a 1-parameter semistable degeneration, as in [19, Thm. 5.7], [52,
Sec. 2.3], [53, Prop. C.11].

Proof of Proposition 5.10. Consider first a 1-parameter semistable degeneration over ∆u as for
the usual Clemens collapse. Near an snc stratum of the fiber, one defines c as the deformation-
retraction of {x(1) · · ·x(n) = u} ⊂ ∆n ×∆u to {x(1) · · ·x(n) = 0} ⊂ ∆n × {0} given by keeping
the arguments of the complex numbers x(j) constant and linearly decreasing the absolute values
|x(j)| until one of these absolute values equals zero. These local deformation-retractions may
be patched via partitions of unity, cf. [19, p. 236], to give a piecewise smooth retraction of the
total space of the semistable degeneration onto its central fiber.
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The same procedure works in the D-semistable case: We define a deformation-retraction c of∏
i

{x(1)i · · ·x
(ni)
i = ui} ⊂ ∆n ×

∏
i

∆ui

onto
∏

i{x
(1)
i · · ·x

(ni)
i = 0} ⊂ ∆n × {0} where n =

∑
ni. It is the product of the 1-variable

retractions, linearly decreasing the absolute values of x(j)i until one of them equals zero, for each
i. Note that c fibers over the deformation-retraction of the base

∏
i∆ui to the origin, which

radially contracts each coordinate ui until it equals zero.
The fiber c−1

t (p) over the origin p of the given chart is a product of tori—each torus factor
(S1)ni−1 is given by

|x(1)i | = · · · = |x
(ni)
i | = |ui(t)|1/ni .

Since one linearly decreases the absolute values |x(j)i | for j = 1, . . . , ni simultaneously, they all
hit the value zero at the same time. Finally, one patches the local retractions thus defined over
products of snc strata, in a manner similar to [19]. □

Denote the local monodromy operators on (co)homology about the component Di ∋ 0 by

Ti : H
q(Xt,Z)→ Hq(Xt,Z) or Hq(Xt,Z)→ Hq(Xt,Z).

A semistable degeneration over a curve has unipotent monodromy, so by Proposition 5.9, the
Ti are commuting unipotent operators. Let

Ni := log Ti := (Ti − Id)− 1
2(Ti − Id)2 + 1

3(Ti − Id)3 − · · ·

be their nilpotent logarithms. Any linear combination N :=
∑

aiNi for ai ∈ N positive integers,
defines the same weight filtration W• on Hq(Xt,Z) or Hq(Xt,Z) with weights lying between 0

and 2q, resp. −2q and 0. Here we use that X is Kähler, so that that W• is the weight filtration
of the limit mixed Hodge structure.

Proposition 5.11. Let X → Y be a strict D-semistable degeneration, X Kähler, 0 ∈ Y a
point and t ∈ Y a nearby point. There is a canonical specialization map sp: Hq(Xt,Z) →
Hq(Γ(X0),Z) for all q. Furthermore, sp is surjective when q = 1.

Proof. Proposition 5.10 produces a map ct : Xt → X0. Our goal is now to define a homotopy
equivalence X̃0 → X0 from a new topological space X̃0, that admits a map X̃0 → Γ(X0), so
that we have the following diagram:

Xt → X0 ← X̃0 → Γ(X0);

our map sp will be the composition H1(Xt,Z)→ H1(X0,Z)
∼←− H1(X̃0,Z)→ H1(Γ(X0),Z).

The topological space X̃0 is built as follows. Let X0 =
⋃
Vj be the decomposition of X0 into

its irreducible components and VJ denote (an irreducible component of)
⋂

j∈J Vj . Each stratum
VJ ⊂ X0 is locally a product of snc strata, with local form∏

i∈I{x
(1)
i = · · · = x

(ni)
i = 0} ⊂

∏
i∈I{x

(1)
i · · ·x

(ni)
i = 0},
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Figure 17. Left: The central fiber of a semistable degeneration X → ∆u1×∆u2

with five components Vi ⊂ X0, i = 1, 2, 3, 4, 5 of the central fiber, in green.
Double loci extending over V (u1) in red and double loci over V (u2) in orange.
Local equation of the smoothing of the lefthand triple locus V145 (in blue) is
x(1)y(1)z(1) = u1 and local equation of the smoothing of the righthand codi-
mension 2 stratum V1234 (in blue) is {x(1)y(1) = u1} × {x(2)y(2) = u2}. Right:
Topological space X̃0 with double loci V12, V23, V34, V45, V51 replaced with
1-simplex bundles Σ12, Σ23, Σ34, Σ45, Σ51 and with V145 and V1234 replaced, re-
spectively, with 2-simplex and (1, 1)-polysimplex (i.e. square) bundles Σ145 and
Σ1234. The dual complex Γ(X0) is the blue triangle glued to the blue square.

see Definition 5.1(3). Thus, the local dual complex of X0 at any point v ∈ V o
J in the open

snc stratum is a product of (ni − 1)-simplices, and these local dual complexes form a product-
of-simplices, i.e. polysimplex bundle ΣJ → VJ . Since we assume that f : X → Y is strict
D-semistable, the polysimplex bundle ΣJ is in fact trivial: ΣJ ≃homeo VJ ×

∏
i σni−1. We define

X̃0 :=
⊔

J ΣJ/ ∼

where ∼ is the equivalence relation given by the inclusion of ΣJ |VJ′ ↪→ ΣJ ′ corresponding to
the face inclusion of the product of simplices

∏
σni−1 corresponding to the inclusion of subsets

J ⊂ J ′. See Figure 17.
Then X̃0 has a homotopy equivalence to X0 by decreasing the proportions of the polysimplices

from side length 1 to 0. Furthermore, there is a natural contraction map

µ : X̃0 → Γ(X0)

given by collapsing each open snc stratum to a point, which collapses the polysimplex bundle
ΣJ to a polysimplex

∏
i σni−1. For instance, in righthand side of Figure 17, the components are

contracted to points, and the interval bundles over double loci are contracted to intervals.
Noting that Hq(X0,Z) ≃ Hq(X̃0,Z) by the homotopy equivalence X̃0 → X0 we may then

define sp := µ∗ ◦ (ct)∗ : Hq(Xt,Z)→ Hq(Γ(X0),Z).
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To prove surjectivity of sp when q = 1, let α0 ∈ H1(Γ(X0),Z). Then, we may lift α0 to an
element α ∈ H1(Γ

[1](X0),Z) as the map H1(Γ
[1](X0),Z) → H1(Γ(X0),Z) is surjective for any

polyhedral complex.
Starting with the vertices vj ∈ α[0], we fix a lift ṽj ∈ V o

j in the open stratum of the corre-
sponding component. For an edge ejj′ ∈ α[1] connecting vertices vj and vj′ , we lift to a path
ẽjj′ in X0 connecting ṽj and ṽj′ and crossing the open stratum V o

jj′ . This produces a lift α̃ of
α0 to a closed singular 1-chain in X0. To further lift to H1(Xt,Z), consider the inverse image

αt := c−1
t (α̃ ∩Xreg

0 )

of the intersection of α̃ with the regular locus.
Consider the point pjj′ = ẽjj′ ∩ V o

jj′ where the edge ẽjj′ crosses a double locus. There are
two limit points of αt on the circle c−1

t (pjj′). We may connect these limiting points by an arc
of the circle so as to lift the corresponding path ẽjj′ into Xt. The result is a closed 1-chain in
Xt whose homology class maps to α0 under sp. □

Proposition 5.12. Let f : X → Y be a strict D-semistable morphism over an snc pair (Y,D),
X Kähler, and let 0 ∈ Y . We have a canonical isomorphism grW0 H1(Xt,Z) ≃ H1(Γ(X0),Z).

Proof. By the definition of the integral weight filtration, we have

grW0 H1(Xt,Z) = H1(Xt,Z)/ ker(N)

and ker(N) =
⋂

i∈I ker(Ni). By the second part of Proposition 5.11, it suffices to prove that
ker(sp) = ker(N) rationally.

Let ∆ → ∆k, u 7→ (u, . . . , u) be the diagonal cocharacter. Then the pullback of X → Y

along ∆ is a 1-parameter degeneration X∆ := X×Y ∆→ ∆, whose singularities are analytically
locally of the form

x
(1)
1 · · ·x

(n1)
1 = · · · = x

(1)
k · · ·x

(nk)
k = u,

i.e. a fiber product of snc singularities. By subdividing into lattice simplices the corresponding
dual polysimplex

∏k
i=1 σni−1 to this stratum, we produce a toroidal resolution X ′

∆ → ∆ which is
a semistable degeneration, and for which Γ(X ′

∆,0) ≃ Γ(X0) is a subdivision of the dual complex.
In particular, we have a canonical isomorphism H1(Γ(X

′
∆,0),Z) ≃ H1(Γ(X0),Z) and further-

more, the specialization map sp∆ for the 1-parameter semistable degeneration X ′
∆ agrees with

sp under this isomorphism. Thus, it suffices to prove that the kernel of sp∆ : H1(Xt,Q) →
H1(Γ(X

′
∆,0),Q) is W−1 ⊗Q. The result now follows from [43, Sec. 1, p. 105]. □

Proposition 5.13. Let f : X → Y be a D-nodal degeneration, with 0 ∈ Y and t ∈ Y a nearby
point. Let Ti : H1(Xt,Z) → H1(Xt,Z) be the monodromy about a component Di ⊂ D passing
through 0. Then

Ni(x) = −
∑
{j,j′}

(x · γ̃jj′)γjj′
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where the indices {j, j′} run through all double loci Vjj′ over the general point of Di, γjj′ :=

[c−1
t (pjj′)] and γ̃ij := [c−1

t (Vjj′)] for any point pjj′ ∈ Vjj′ , where ct : Xt → X0 is the continuous
map from Proposition 5.10.

Proof. The formula follows from a theorem of Clemens which computes the monodromy of any
semistable degeneration [20, Thm. 4.4]. Though the case at hand is easier, since we only have
simple nodes in the general fiber over Di and the computation is essentially the same as the
Picard–Lefschetz formula. □

This formula is compatible with the formula riBi for the monodromy bilinear form of a shifted
matroidal degeneration X(R,H )→ ∆k. Indeed, any double locus Vjj′ of the general fiber over
the i-th coordinate hyperplane of ∆k has, by construction, vanishing cycle γjj′ = xi ∈ N ≃
grW−2H1(Xt,Z). Thus, Proposition 5.13 gives

Bi(x, x) =
∑
{j,j′}

(x · γ̃jj′)L(x,xi) for x ∈ H1(Xt,Z),

where γ̃jj′ ∈ H2g−1(Xt,Z) is defined as above and L is the principal polarization. But for
all {j, j′}, we have (− · γ̃jj′) = L(−, γjj′). Thus, Bi(x, x) = rix

2
i where ri is the number of

hyperplanes normal to xi in the multiset H .

5.3. Resolution of the base change of a nodal morphism. The goal of this section is to
prove the following general theorem.

Theorem 5.14. Let π : Y ′ → Y be a morphism, and let f ′ : X ′ → Y ′ be the base change of a
strictly D-nodal morphism f : X → Y along π. Suppose furthermore that Y ′ is smooth and the
reduction of E := π−1(D) is an snc divisor.

Then an ordering of the components of E, and an ordering of the components Vi over each Di

determines, in a canonical manner, a relatively projective resolution of singularities X ′′′ → X ′

for which the morphism f ′′′ : X ′′′ → Y ′ is strictly E-semistable, and an intermediate partial
resolution X ′′′ → X ′′ → X ′ for which f ′′ : X ′′ → Y ′ is strictly nearly E-nodal.

This theorem can be viewed as an explicit special case of the functoriality theorem for mul-
tivariable semistable reductions, see [2, Thm. 4.4]. The proof works by observing that the base
change is locally toroidal. This allows us to apply toroidal resolutions locally, which glue to a
global resolution.

Proof. Define a bijection between the components of E and the non-negative integers

{1, . . . ,# components of E},(29)

increasing in the total order, so that any snc stratum EJ :=
⋂

j∈J Ej defines a unique subset
of (29). Suppose that EJ is an snc stratum of codimension n in Y ′, so that |J | = n. Say J =
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{1, . . . , n} for indexing convenience. At any point in the open snc stratum Eo
J , the hypothesis

that E = π−1(D) is snc implies that π induces a local monomial transform

u1 = wr11
1 · · ·w

r1n
n =: wr⃗1 ,

· · ·

uk = wrk1
1 · · ·wrkn

n =: wr⃗k .

(30)

where ui are a subset of local coordinates on Y , which cut out the stratum DI =
⋂

i∈I Di into
which EJ maps, and wj cuts out Ej . By the hypothesis that f is D-nodal, the base change f ′

has a local form which is the product of a smooth morphism with

{x1y1 = wr⃗1 , · · · , xmym = wr⃗m} 7→ (w1, . . . , wn),(31)

up to relabeling the indices {1, . . . ,m} of the fiber components.
Note that xi and yi are local equations of components of Vi ⊂ Xi over Di. By convention,

take xi to cut out the component earlier in the total order (here we use smoothness of Vi to
ensure that xi = yi = 0 is not a self-nodal locus of a component).

We will first construct the partial resolution f ′′ : X ′′ → Y which is nearly E-nodal. The
equations (31) define a morphism of toric varieties. The domain of (31) is described by the
normal fan of a polytope P (r⃗1, . . . , r⃗n), which we define now.

Let bi : R→ RJ ≃ Rn for i = 1, . . . , k be the Z-piecewise linear function

bi(z) :=

{
−zr⃗i if z ≤ 0,

0 if z ≥ 0,

and let b(z1, . . . , zk) :=
∑k

i=1 bi(zi). Then the graph Γ(b) ⊂ Rk × RJ is the boundary of the
polytope P (r⃗1, . . . , r⃗n) := Γ(b) + (R≥0)

J—the monomials xi and yi respectively correspond to
the primitive integral vectors along the restriction of the graph of b, to the positive- and negative
i-th coordinate axis R ⊂ Rk, respectively.

The bending parameter of a piecewise linear function b0 : R → RJ at z = z0 is defined by
∂b0
∂z (z0 + ϵ) − ∂b0

∂z (z0 − ϵ) ∈ RJ , for ϵ ≪ 1. Then the function bi : R → RJ above is uniquely
characterized by the following properties:

(1) bi(z) = 0 for z ≫ 0,
(2) bi only bends at z = 0, and
(3) the bending parameter at z = 0 is r⃗i = ri1e1 + · · ·+ rinen ∈ RJ .

Fix a very large integer N ≫ 0. We may uniquely define a (continuous, piecewise linear)
function ci : R→ RJ for i = 1, . . . ,m by the following properties:

(1) ci(z) = 0 for z ≫ 0,
(2) ci(z) only bends at z = jN + ℓ for j ∈ J and ℓ ∈ {1, . . . , rij} and
(3) the bending parameter at z = jN + ℓ is the basis vector ej ∈ RJ .
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Figure 18. Domains of linearity of b and c : R2 → R3. The relevant monomial
transform is u1 = w3

1w
2
3 and u2 = w2

1w2w3. The bending locus of b is depicted
in solid black, while the bending locus of c is depicted in dotted red, green, and
blue lines. The red, green, and blue lines have bending parameter e1, e2, and
e3, respectively. Here, we took N = 4.

See Figure 18 for a depiction of the domains of linearity in an example, when k = 2. We
define c : Rk → RJ by the formula c(z1, . . . , zk) :=

∑k
i=1 ci(zi). Then since each ci is convex,

Γ(c) is the boundary of a polytope Q(r⃗1, . . . , r⃗n) := Γ(c) + (R≥0)
J .

Note that the normal fan FJ of Q(r⃗1, . . . , r⃗n) depends only on labelling of the indices J =

{1, . . . , n}. Furthermore, the normal fan of Q(r⃗1, . . . , r⃗n) is a refinement of the normal fan of
P (r⃗1, . . . , r⃗n) since the linear parts of bi(z) and ci(z) are the same for any z < 0 or z ≫ 0,
e.g. z > (# components of E) ·N +max rij suffices.

Thus, in a neighborhood of a point p ∈ (f ′)−1(EJ), the normal fan of Q(r⃗1, . . . , r⃗n) defines a
toroidal birational morphism X ′′

p → X ′
p. To check that this birational modification is globally

well-defined, it suffices to prove that these birational modifications are compatible with the
incidences EJ ⊂ EJ ′ for some J ′ ⊂ J , and that they are compatible on overlapping charts over
a given stratum EJ . The latter is automatic since the modification X ′′

p → X ′
p depended only

on the ordering of J and the snc divisor E has global normal crossings.
To check the compatibility between strata, the restriction of the morphism of fans

FJ →
∏
j∈J

R≥0e
∨
j
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to the coordinate subspace FJ ′ →
∏

j=J ′ R≥0e
∨
j should be the normal fan of the corresponding

polytope for J ′. Dually, in terms of the above defined PL function c = cJ : Rk → RJ , if we
consider the projection pJ,J ′ : RJ → RJ ′ , then the composition

Rk cJ−→ RJ
pJ,J′
−−−→ RJ ′

should agree with the PL function cJ ′ and indeed it does—this projection simply forgets the
bending (3) along any zi = jN + ℓ for the j ∈ J \ J ′ and any i ∈ {1, . . . ,m}. In Figure 18, this
corresponds to forgetting the colors indexed by J \ J ′.

Hence, there is a globally well-defined toroidal birational modification X ′′ → X ′ which is
locally defined by the morphism from the normal fan of Q(r⃗1, . . . , r⃗n) to the normal fan of
P (r⃗1, . . . , r⃗n). It is furthermore relatively projective, since we defined it in terms of polytopes.

We claim that f ′′ : X ′′ → Y ′ has nearly E-nodal singularities. We check that f ′′ : X ′′ → Y ′

has the desired local form of Definition 5.1(2) by examining a neighborhood of a face of the
polytope Q(r⃗1, . . . , r⃗n), i.e. a neighborhood of a domain of linearity of the function c : Rk → RJ .
Such a domain of linearity is given by equations⋂

i∈I{zi = jiN + ℓi}

for some subset I ⊂ {1, . . . , k} and some indices ji ∈ J . In the neighborhood of such a domain,
the bending parameter of ci(zi) is eji and thus, the local equation of the morphism f ′′ is

x1y1 = wj1 , · · · , xmym = wjm

where xi and yi are the local equations of the reduced union of components corresponding,
respectively, to the facets of Q(r⃗1, . . . , r⃗n) given by zi ≤ jiN + ℓi and zi ≥ jiN + ℓi. Thus, f ′′

has nearly E-nodal singularities, which are E-nodal if and only if the ji are distinct, ranging
over all possible strata over all EJ .

Thus, we have completed our first goal: producing a birational modification X ′′ → X ′ for
which f ′′ : X ′′ → Y is nearly E-nodal. But, as noted before, X ′′ may not be smooth, due to
the presence of the local form

x1y1 = · · · = xmym = w,(32)

and products thereof. The fan of this local form may be described as follows: Let [0, 1]m ⊂ Rm

denote the unit cube and let Cone [0, 1]m ⊂ Rm × R denote the cone over the cube. Then, the
morphism to Cw is given by the morphism of fans Cone [0, 1]m → R≥0 which is projection to
the last coordinate.

We may define a small, regular resolution of (32) by subdividing the fan into standard affine
cones, in a manner which introduces no new rays. Note that the original rays, corresponding
to the components over w = 0, are the cones over the 2m vertices of the cube. Equivalently,
we must decompose the cube [0, 1]m into lattice simplices of minimal volume (1/m!). Such
a subdivision arises from a sequence of toric blow-ups, by blowing up the components of the
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fiber over w = 0 of (32) in any order. Blowing up the component corresponding of a vertex
of the cube [0, 1]m produces a subdivision of the cube which inserts all diagonals of the cube
emanating from that vertex. The resulting polyhedral cells are cones over lower dimensional
cubes. Further blow-ups further subdivide these cones, until all cells are standard simplices.

Thus, to define globally a projective subdivision, requires a total ordering of the components
of f ′′ : X ′′ → Y over each component Ej ⊂ E. Since (32) only involves a single coordinate u, it
suffices to resolve by blowing up, in the specified order, the components over each Ej = V (wj).
Then, over a deeper stratum EJ , these blow-ups are a product of blow-ups of the local forms
(32), ranging over j ∈ J . Thus, they induce the product resolution over deeper strata EJ .

The total ordering of all components Vi over Di for all i ∈ I induces a total order on
the components over Ej . For instance, the total order on the original components induces a
lexicographical ordering on the components introduced by the partial resolution X ′′ → Y ′ over
each Ej , which are naturally indexed by the top-dimensional cells of a cuboid whose corners are
the strict transforms of components of the fibers of X ′ → Y ′ over Ej , see Figure 18. Blowing
up these components in order, we produce a subdivision for each (singular) stratum over Ej ,
giving a projective resolution of singularities X ′′′ → X ′′.

Examining the cones of the resulting fan for X ′′′, we see that the local form for f ′′′ : X ′′′ → Y ′

is given by a product of morphisms of fans of the form∏
[Cone{0 ≤ z1 ≤ · · · ≤ zm ≤ 1} → R≥0]

(here, we allow m = 1 to include factors which are smoothings of nodes) with a smooth mor-
phism. We deduce that the morphism f ′′′ is E-semistable. □

Remark 5.15. Suppose π : Y ′ → Y is a birational modification. Consider the strict transforms
Ei := π−1

∗ Di. For any stratum EJ ⊂ Ei contained in the strict transform (i.e. J ∋ i), the local
monomial transform (30) is of the form uj = wr⃗j where wr⃗j does not involve the variable wi for
all j ̸= i, and wr⃗i = wi ·(a monomial in wj for j ̸= i). Thus, in Theorem 5.14, nodes over Di are
in natural bijection with the nodes over Ei and indeed, Eo

i → π(Eo
i ) ⊂ Do

i is an isomorphism
onto its image, with the restriction of the map X ′′′ → X an isomorphism. So, at least over Eo

i ,
the morphism f ′′′ : X ′′′ → Y ′ is E-nodal.

More generally, when π is an alteration, the nodes over Eo
i are étale over the nodes of Do

i .

5.4. Resolution of the base change of a transversely shifted matroidal degenera-
tion. Suppose that X = X(R,H ) is a transversely shifted matroidal degeneration, so that,
in particular, X is regular and f : X → ∆k has D-nodal singularities (Prop. 5.3). Then f is
strictly D-nodal if and only if for each element xi ∈ N of the matroid R, there are at least
two hyperplanes with normal vector xi (Prop. 5.5). In this case, we may directly apply the
resolution algorithm of Theorem 5.14. But in fact, even if an irreducible component over V (ui)

is self-nodal, the two branches are not permuted by monodromy, because it is possible to choose
globally a normal vector to a hyperplane H ∈H . So the resolution algorithm of Theorem 5.14
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Figure 19. Left: Bending of b1, b2, b3 for X(32 | b1, b2, b3) a shifted matroidal
degeneration. Right: Bending of c1, c2 for the nearly E-nodal partial resolution
of the base change, in purple, orange, respectively. Grid points are ( 1

32Z)
2. We

have taken N = 4, as in Figure 18.

still works analytically, by consistently choosing one of the two branches and performing the
blow-up in local charts, as in the proof. But, since one does not blow up global Weil divisors,
it is unclear whether the result is, in general, projective.

Example 5.16. Let X(R,H ) = X(2 | b1, b2, b3) be the transversely shifted matroidal degen-
eration depicted in the righthand side of Figure 14. Pass to a Veronese embedding for some
large d≫ 0 (we take 32 times the principal polarization, in the present example).

Consider the monomial base change ∆2 → ∆3 given by

u1 = w2
1w2, u2 = w4

2, u3 = w3
1w2.

The pullback and its nearly E-nodal resolution X(32 | c1, c2) are depicted in Figure 19, where
E := V (w1w2) is the reduced inverse image of D := V (u1u2u3).

The original red hyperplane in the left of Figure 19 generates hyperplanes to its right, in the
direction of positive intersections with x1 = (1, 0), the green hyperplane generates hyperplanes
above it, in the direction of positive intersections with x2 = (0, 1), and the blue hyperplane gen-
erates hyperplanes above and to the left, in the direction of positive intersection with x3 = (1, 1).
Purple hyperplanes (corresponding to u1), always precede orange hyperplanes (corresponding
to u2), because of the ordering on the components V (u1), V (u2) of E.

The righthand figure is then the Mumford construction which describes the nearly E-nodal
partial resolution, as in Theorem 5.14, of the base-changed Mumford construction.
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Figure 20. The two possible small resolutions for a 4-valent intersection point
of 2-dimensional cuboids in Bend(ci). The normal fan is a subdivision of [0, 1]2.

In terms of Mumford constructions, the further small resolution to an E-semistable morphism
is a bit more complicated to describe. Essentially, the relevant blow-ups resolve the 4-valent
intersection points of the (monochromatic) cuboids in Bend(ci) for i = 1, 2, into two 3-valent
intersection points, in a manner which is locally of the form shown in Figure 20.

6. The second Voronoi fan and Alexeev’s theorem

6.1. The universal family of abelian torsors with theta divisor. One of the most cele-
brated applications of the Mumford construction is the modular compactification of the moduli
space Ag of PPAVs of dimension g, due to Alexeev [4], building on work of Namikawa, Naka-
mura, and Faltings–Chai [47, 48, 49, 50, 17, 7]; see [51, Thm. 9.20].

In previous sections, we have extracted from a section bi ∈ H0(Tg,ZPL/ZL) on a torus
Tg = MR/M, or its PL lift bi : MR → R, an integral bilinear form Bi ∈ Sym2M∨. Here
we reverse this procedure, extracting from a bilinear form Bi a PL function bi with periodic
bending locus. In this manner, we produce both a canonical choice of fan for Ag (see Def. 2.24),
and a “tautological” Mumford construction over its cones. The procedure is straightforward: we
graph (a function closely related to) Bi(m,m) over the lattice points m ∈M, take the convex
hull of the corresponding integral points, and take the unique PL function whose graph is the
boundary of this hull.

Definition 6.1. Let B ∈ Pg be a positive-definite symmetric bilinear form on MR. It defines
a square-distance function dB on MR by x 7→ B(x, x). The Voronoi decomposition VorB of MR

is the one whose maximal open polyhedral cells are defined as follows:

VorB,m = {x ∈MR
∣∣ dB(x,m) < dB(x,m

′) for all m′ ∈M \m},

ranging over all m ∈M. That is, the maximal cells are those points closer (with respect to dB)
to one lattice point m ∈M than any other.

The Delaunay decomposition DelB is the polyhedral decomposition of M whose cells are dual
to the cells of the Voronoi decomposition, and whose vertices are M ⊂MR.
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Figure 21. Voronoi cells for 4x2 + 2xy + 3y2. Lattice points m ∈M in blue.

Example 6.2. Consider the bilinear form B on MR ≃ R2 corresponding to the matrix

B =

(
4 1

1 3

)
from Figure 8 and Example 3.34. The associated square distance function is given by the
quadratic form 4x2+2xy+3y2. The Voronoi cells are depicted in Figure 21. The corresponding
Delaunay decomposition is depicted in Figure 7.

Remark 6.3. When B is degenerate, the Voronoi cells are still defined, but they are of infinite
volume, as they are invariant under translation by the null subspace of B.

On the one hand, the Voronoi decomposition varies continuously with B ∈ P+
g , and while

its cells are polytopes, they are not integral. On the other hand, the Delaunay decomposition
has integral polytope cells, which do not vary continuously, but rather are constant along the
relative interiors of the cones of a fan:

Definition 6.4. The second Voronoi fan Fvor is the polyhedral decomposition of P+
g whose

cones are the closures of loci on which the Voronoi decomposition is combinatorially constant,
or equivalently, on which the Delaunay decomposition is constant. More precisely, B,B′ ∈ P+

g

are in the relative interior τ o of the same cone τ ∈ Fvor if and only if B and B′ are connected by a
path along which the Delaunay decomposition is constant. The second Voronoi compactification
is the toroidal compactification (see Section 2.5)

Ag ↪→ Avor
g := AFvor

g .
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As required by Definition 2.24, Fvor is invariant under the action of A ∈ GLg(Z) on B ∈ P+
g

via B 7→ ABAT , as these transformations correspond to changes-of-basis of the lattice M ≃ Zg.
It is a theorem due to Voronoi that the number of GLg(Z)-orbits of cones is finite.

Construction 6.5 (Mumford construction of second Voronoi type). Over each cone B ∈ Fvor

intersecting P+
g there is a “tautological” Mumford construction, which we will now define.

Let Bi ∈ B be primitive integral vectors generating the rays of B. Then, by considering the
characteristic vector of the bilinear form Bi mod 2, it is possible to choose characteristic linear
forms Li : M→ Z for which

m 7→ bi(m) :=
Bi(m,m)− Li(m)

2
(33)

is integer-valued on M ≃ Zg. For instance, we may take the coefficients of Li to be the
diagonal entries of the matrix Bi in some basis. Then, there is a unique convex section bi ∈
H0(Tg,ZPL/ZL) admitting a lift to MR which agrees with the above function bi on M.

It is a simple verification from Definition 6.1 that
⋃

iBend(bi) is exactly Del∑ riBi
for any

(r1, . . . , rk) ∈ Nk—this condition translates into a condition that the bending locus of the convex
ZPL function which agrees with m 7→

∑k
i=1 ribi(m) on M is the same for all (r1, . . . , rk) ∈ Nk.

Thus, the bi are dicing. Furthermore, the additional condition of Construction 3.26 is satisfied:
The associated bilinear forms Bi span extremal rays of a polyhedral cone in (Ag)trop. Thus, we
get a relatively proper extension of the universal family Xuniv(b)→ ÃB

g . ♣

Construction 6.6. We now construct a torsor X ⋆
g → Ag over the universal abelian variety

Xg → Ag and an extension of it over the second Voronoi compactification.
The issue begins in the interior Ag, see e.g. the discussion in [32, Sec. 1] and [49, Sec. 19

and bottom of p. 209]: For a given abelian variety (A, 0, L) with origin 0 ∈ A and principal
polarization L ∈ NS(A), there are 22g different possible (−1)-symmetric lifts L ∈ Pic(A) of L.
These lifts define naturally a torsor over the 2-torsion subgroup A[2] and thus, on the universal
family Xg → Ag we have a natural torsor Lifts(L) → Ag under the group scheme Xg[2] → Ag

of relative 2-torsion in Xg → Ag. But Lifts(L) admits no section—it is impossible to globally
lift L to some (−1)-symmetric L ∈ Pic(Xg/Ag) when g ≥ 2.

There are two ways to resolve the issue: Either one passes to a finite étale cover Ãg → Ag

over which this torsor is trivialized, or one defines a new universal family X ⋆
g → Ag of abelian

torsors (X,L), with a lift of the principal polarization to a line bundle.
The family X ⋆

g will be, étale-locally over Ag, isomorphic to Xg → Ag. Over an étale open
chart Ui → Ag over which there is a lift L of L, we have a family ((Xg)Ui , LUi) → Ui. We
may uniquely glue these families over the double overlaps Ui ∩Uj to produce a universal family
(X ⋆

g ,L) → Ag. Notably, the gluing of (Xg)Ui and (Xg)Uj may not respect the origin sections,
but must respect the lift L.

For a cone B ∈ Fvor, Construction 6.5 gives a Mumford construction Xuniv(b) → ÃB
g . In

the category of DM analytic stacks, this family descends as a family of polarized varieties over
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an étale neighborhood of the boundary strata of AB
g . The reason is that bi ∈ H0(Tg,ZPL/ZL)

which define the relevant polytopal Mumford Construction 3.26 are defined canonically by the
Bi—one may worry that some non-canonicity is introduced by the choice of the characteristic
linear form Li(m) in (33) which determine the lifts bi. But a different choice Li 7→ Li + 2L′

i

produces the same section bi.
On the other hand, due to the shifts Li(m), the resulting Mumford construction has no

canonical origin section, see Remark 3.39. Thus, the output of Construction 6.5 does not glue
canonically (i.e. in a manner independent of the choice of Li) to the universal family Xg → Ag

(which has an origin section), but rather to the universal family X ⋆
g → Ag (which has a canonical

lift of the principal polarization). If one were to take Li = 0 in (33), we would retain a canonical
origin point, but the lift bi fails to have integral slopes, leading to non-reduced fibers, see [49].

By their canonicity and the uniqueness of gluings, the Mumford constructions of Construction
6.5 are compatible between adjacencies of cones in Fvor. Thus, we may glue them via the unique
gluings respecting the lift of L, to produce a proper extension

X ⋆
g
vor

:= X ⋆
g ∪

⋃
B∈GLg(Z)\Fvor

Xuniv(b)→ Avor
g .

In summary, X ⋆
g
vor admits a relatively projective, surjective morphism (a priori, just in the

category of DM analytic stacks)

fvor : X ⋆
g
vor → Avor

g ,

extending the universal family of abelian torsors with lift of principal polarization. It follows
from Serre’s GAGA for Deligne–Mumford stacks, see [62, Cor. 5.13], that X ⋆

g
vor is a DM alge-

braic stack and fvor is projective. For instance, fvor becomes a morphism of projective schemes
after taking the pullback toroidal compactification of an appropriate étale cover.

Our construction also produces an extension

fvor : (X ⋆
g
vor

,Θ
vor
g )→ Avor

g

of the universal pair (X,Θ). Here, the theta divisor Θ ∈ |L| is the unique element of the linear
system. Note that Θ extends as an effective, relatively ample divisor over Avor

g as the vanishing
locus of the unique weight w = 1 theta function Θ = V (Θ(0/1,...,0/1)) of Construction 3.21. ♣

Example 6.7 (Second Voronoi fan for g ≤ 6). We now describe, in varying levels of detail,
the second Voronoi fan of Ag for small dimensions, and the extension of the universal family
over it, defined by Construction 6.6. This line of Russian mathematical inquiry is notable for
extending across more than a century.

g = 1: Here, any fan for A1 is the same, and there is only one Voronoi cone, corresponding
to the ray R≥0{x2} ⊂ P+

1 ≃ R≥0. The corresponding Delaunay decomposition is Figure 4, and
the resulting Mumford construction is the Tate curve. The universal family

X ⋆
1
vor → Sp2(Z)\H1

vor ≃ P(4, 6)
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Figure 22. Projectivization of the second Voronoi fan decomposition of P+
2 .

Cones of dimension 3, 2, 1 in green, blue, red, respectively.

is the extension of the universal elliptic curve by a nodal elliptic curve. Over the coarse space
P1
j of P(4, 6), i.e. the j-line, the nodal curve fibers over j =∞.

g = 2: Here, the second Voronoi fan is Fvor = GL2(Z) · R≥0{x2,y2, (x + y)2}. See Figure
22. Thus, Fvor is the orbit of a single cographic cone, associated to the theta graph, with the
lower dimensional faces corresponding to contractions of the theta graph (caveat lector: edge
contractions of G give, in the sense of matroids, deletions of the cographic matroid M∗(G)).

There is one orbit each of 3-, 2-, 1-, and 0-dimensional cones, corresponding respectively to
the cographic cones of the theta graph, the wedge of two circles, a single circle, and a point. Over
a maximal, 3-dimensional cone, the universal family X ⋆

2
vor → Avor

2 is extended by a Mumford
construction X(b) → ∆3 isomorphic to Example 3.35. The reduction theory, i.e. analysis of
GL2(Z)-equivalence classes, of positive-definite bilinear forms of rank 2, goes back at least to
work of Fricke–Klein [37]; see Vallentin [64, Ch. 2] for some historical discussion.

g = 3: Here, the second Voronoi fan is Fvor = GL3(Z) ·R≥0{x2
i , (xi−xj)

2} for 1 ≤ i < j ≤ 3.
There is an analogous Voronoi cone in any rank g, called Voronoi’s principal domain of the first
type. It is the graphic cone BM(Kg+1) associated to the graphic matroid M(Kg+1) of the complete
graph Kg+1 on g + 1 vertices. The number of GL3(Z)-orbits of cones of dimensions 6, 5, 4, 3,
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2, 1, 0 are, respectively, 1, 1, 2, 2, 1, 1, 1. Over the maximal, 6-dimensional cone, the universal
family X ⋆

3
vor → Avor

3 is extended by a Mumford construction X(b) → ∆6 associated to the
cographic or graphic matroid of the complete graph K4 (note that M(K4) ≃M∗(K4) since K4

is a planar, self-dual graph). See Example 4.13.

g = 4: Here, the second Voronoi fan is Fvor = GL4(Z)·{Bblack, Bgrey, Bwhite}, see for instance
[64, Sec. 4.4.1]. That is, there are three GL4(Z)-orbits of maximal, 10-dimensional cones of Fvor.
The original computation goes back to Delaunay [24, Thm. III], who found all but one of the
GL4(Z)-orbits of cones of Fvor, and Shtogrin [59], who filled the gap.

The cone Bblack is Voronoi’s principal domain of the first type, but unlike for g ≤ 3, it no
longer forms a fundamental domain for the action of GL4(Z). It is a matroidal cone, associated
to the graphic matroid M(K5) of the complete graph K5. This cone is not cographic—the dual
of a graphic matroid is graphic if and only if the graph is planar, and K5 is not planar.

The cones Bgrey and Bwhite are simplicial, but are not matroidal—they both have one ray
generated by the positive-definite quadratic form giving the D4-lattice, whereas all rays of a
matroidal cone are quadratic forms of rank 1. There is one additional maximal, matroidal cone
BM∗(K3,3) of dimension 9. It is the matroidal cone of the cographic matroid M∗(K3,3) of the
complete bipartite graph K3,3 and is the facet shared between two white cones.

The number of orbits of cones of dimensions 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 are, respectively,
3, 4, 7, 11, 11, 9, 7, 4, 2, 2, 1, see Hulek–Tommasi [35, p. 232]. In particular, the toroidal
compactification Avor

4 has 2 boundary divisors and 3 zero-dimensional strata.

g = 5: Correcting the nearly complete computations of Baranovskii–Ryshkov [56] to find one
missing case, Peter Engel [26] verified by computer that there are 222 maximal, 15-dimensional
Voronoi cones for g = 5. There are 9 rays, giving the boundary divisors of Avor

5 . Dutour Sikirić
et al. [25] proved that there are 110305 total GL5(Z)-orbits of cones in Fvor (loc. cit. give a
slightly smaller number, as they only count cones which intersect P5).

There are 4 maximal, matroidal cones, of dimensions 15, 12, 12, 10. The first of these is
Voronoi’s principal domain of the first type BM(K6) and the last of these is the matroidal cone
BR10

associated to the Seymour–Bixby matroid, see Example 4.7. The two maximal, matroidal
cones of dimension 12 are the cographic cones of two trivalent genus 5 graphs (one of which is
the 1-skeleton of a cube).

g = 6: By work of Danilov–Grishukhin [23, Sec. 9], there are 11 maximal matroidal cones,
with 8 cographic of dimension 15, and the remaining three of dimensions 21, 16, 12. Respec-
tively, these are the graphic cone of K7 and two matroidal cones, associated to regular matroids
on 16 and 12 elements which are neither graphic nor cographic. The number of orbits of maximal
cones is unknown, but exceeds 567, 613, 632 by computations of Baburin–Engel [10].
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Remark 6.8. Construction 6.6 shows that there exists a canonical element of the group
H1(Ag,Xg[2]) giving the abelian torsor X ⋆

g . We have an isomorphism with the group cohomol-
ogy H1(Ag,Xg[2]) ≃ H1(Sp2g(Z), (Z/2Z)2g) where Sp2g(Z) acts on (Z/2Z)2g by the standard
representation. Furthermore, the class of X ⋆

g is nontrivial for g ≥ 2, cf. [32]. It is natural to ask
whether for g ≥ 2 the (étale) Tate–Shafarevich group H1(Ag,Xg) satisfies H1(Ag,Xg) ≃ Z/2Z,
where we view Xg as a group scheme over Ag. An affirmative answer would show that X ⋆

g is
the only abelian torsor under the universal abelian variety for g ≥ 2.

The question of whether H1(Ag,Xg) ≃ Z/2Z is equivalent to the question of whether we
have H1(Sp2g(Z), (Z/2Z)2g) ≃ Z/2Z, as the map

H1(Sp2g(Z), (Z/2Z)2g) ≃ H1(Ag,Xg[2])→ H1(Ag,Xg)

is an isomorphism. To see this, note first that by [55, Prop. XIII.2.3], the group H1(Ag,Xg)

is torsion. Second, for each n ∈ N, the natural map H1(Ag,Xg[n]) → H1(Ag,Xg)[n] is an
isomorphism by the long exact sequence in cohomology arising from the short exact sequence

0→ Xg[n]→ Xg
·n−→ Xg → 0;

moreover, the group H1(Ag,Xg) = H1(Sp2g(Z),Z2g) is 2-torsion, because Sp2g(Z) contains an
element that acts as −1 on Z2g.

A computation via the description SL2(Z) = (Z/4Z)∗(Z/2Z) (Z/6Z) shows that H1(A1,X1) ≃
H1(SL2(Z), (Z/2Z)2) is isomorphic to Z/2Z, even though X ⋆

1 ≃ X1. Thus, there exists a
universal non-trivial torsor under X1 → A1, i.e. a family of genus one curves over A1 with no
section whose Jacobian is X1 → A1. We do not know a geometric construction of this family.

Definition 6.9. Let (X,D) be a pair of a projective variety and a Q-divisor D. We say that
(X,D) is KSBA-stable if:

(1) the pair (X,D) has slc singularities (see e.g. [40]), and
(2) KX +D is Q-Cartier and ample.

Proposition 6.10. Let ϵ be a sufficiently small positive rational number. Then every fiber of
(X ⋆

g
vor

, ϵΘ
vor
g )→ Avor

g is a KSBA-stable pair.

Sketch. In any Mumford construction of second Voronoi type, see Construction 6.5, all fibers
have slc singularities, and the canonical bundle KX ≃ OX is trivial. This follows from a mild
generalization to affine toric bases of Proposition 3.14, by checking that slices S(r1,...,rk) of the
normal fan, for r1B1 + · · · + rkBk integral, are integral tilings of NR. Indeed, S(r1,...,rk) is, up
to translation, the image of the Voronoi decomposition VorB under the map NR : MR → NR

corresponding to B =
∑k

i=1 riBi. A linear algebra computation verifies the integrality.
The log canonical centers of X are exactly the toric strata of the Mumford construction.

Given an effective divisor D ⊂ X, there is an ϵ ≪ 1 for which (X, ϵD) defines a KSBA-stable
pair if and only if D contains no log canonical centers, i.e. toric strata. In fact, in our setting,
any ϵ ≤ 1 suffices, see [3, Thm. 3.10], generalizing [38, Thm. 17.13].
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We claim this property follows from the definition of Θ(0/1, ..., 0/1). The key observation is
that, for every vertex of a polyhedral face F ⊂ DelB, B ∈ B◦, the restriction Θ(0/1, ..., 0/1)|YF

of the theta divisor to the stratum YF ⊂ X is a section of a (toric) line bundle, for which the
coefficient of any monomial corresponding a vertex of F is nonzero, i.e. lies in C∗. This property
ensures that the restriction of the theta divisor contains no toric strata of YF . □

Theorem 6.11 ([4, Thm. 1.2.17]). For ϵ ≪ 1, (X ⋆
g
vor

, ϵΘ
vor
g ) → Avor

g is the universal family
over the normalization of the KSBA compactification of the space of KSBA-stable pairs (X, ϵΘ),
with X a torsor under a g-dimensional PPAV and Θ ⊂ X the theta divisor.

Sketch. By Proposition 6.10, there is a classifying morphism c : Avor
g → AΘ

g where the latter is,
by definition, the closure, taken with reduced scheme structure, of the space of pairs (X, ϵΘ) as
in Construction 6.6, in the separated DM stack of KSBA-stable pairs [39, 3, 40]. By Zariski’s
main theorem and the normality of toroidal compactifications, it suffices to check that c is finite.

It is easy to see that c defines a morphism over the Baily–Borel compactification A
BB
g , e.g. by

considering the Albanese variety of the normalization of any component of (X, ϵΘ). So if c

contracted some curve, this curve would lie in a fiber of the morphism A
vor
g → A

BB
g . Any such

curve admits an algebraic deformation to a union of 1-dimensional torus orbits—first move the
image point in A

BB
g to the deepest cusp, then apply the torus action. Thus, c would contract

some 1-dimensional toric boundary stratum (P1, 0,∞)→ A
vor
g . But, for any cone B ∈ Fvor, the

combinatorial types of the KSBA-stable fibers over 0 and over u ∈ ∆∗ ⊂ P1 are distinct, by
Construction 6.5. It follows that c contracts no algebraic curves, and hence is finite. □

A similar strategy was employed in [6, Thm. 1, Thm. 5.14] to prove the semitoroidality of
certain KSBA compactifications of the moduli of polarized K3 surfaces.

6.2. Algebraicity and projectivity. We now analyze under what circumstances an extension
of the universal family Xg → Ag or X ⋆

g → Ag of principally polarized abelian varieties or torsors,
by Mumford constructions, are either algebraic or projective.

Proposition 6.12. Let B ⊂ P+
g be a rational polyhedral cone and S be a fan satisfying the

hypotheses of Construction 3.11. The corresponding Mumford construction f : Xuniv(S)→ ÃB
g

is a proper, flat morphism of algebraic spaces.
Suppose, furthermore, that f : Xuniv(b) → ÃB

g is a polytopal Mumford construction, as in
Construction 3.26. Then f is étale-locally projective.

Proof. By replacing Ãg with a suitable further cover, we may assume that the distinction
between Xg and X ⋆

g is erased. Let F be a common refinement of the fans Γ · B and Fvor whose
support is Γ · B, for Γ ⊂ GLg(Z) the Levi quotient. Then we have morphisms

ÃB
g ← ÃF

g → Ãvor
g
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and we may pullback the (a priori) analytic family Xuniv(S)→ ÃB
g and the algebraic universal

family X̃ vor
g → Ãvor

g to produce two families Xuniv′(S) and Xvor → ÃF
g in the analytic and

algebraic categories, respectively.
Taking a common refinement of the fans defining Xuniv′(S) and Xvor we may dominate

Xuniv′(S) and Xvor by a common (universal) Mumford construction X̃ → ÃF
g . Since X̃ →

Xuniv′(S) and X̃ → Xvor are both toroidal morphisms, we can connect Xvor 99K Xuniv′(S) by
a sequence of toric modifications, all of which are algebraic. We deduce that Xuniv′(S) is an
algebraic space. In turn, its contraction Xuniv(S) is a proper algebraic space over ÃB

g .
Finally, we address the case of a polytopal Mumford construction f : Xuniv(b)→ ÃB

g . Then f

is analytically-locally projective over ÃB
g because f is a descent of f◦ : Xuniv

◦ (b)→ T (B), which
is relatively projective over the maximal open subset T (B) discussed at the end of Construction
3.11, and the map T (B)→ ÃB

g along which f◦ descends to f is an étale surjection. The second
statement of the proposition is a consequence of the following general fact: If a separated and
finitely presented morphism of algebraic spaces X → Y is analytically-locally projective, then
it is étale-locally projective.

The proof follows from Artin approximation. Indeed, the Hilbert scheme HilbX/Y is an
algebraic space locally of finite presentation over Y by [61, Tag 0D01]. Take a point p ∈ Y .
An analytic family of ample divisors DU ⊂ XU → U over an analytic neighborhood U ∋ p,
may be approximated by an algebraic family of ample divisors, D′

U ′ ⊂ XU ′ → U ′ over an étale
neighborhood U ′ ∋ p, which coincides with the restriction of DU to p. Possibly replacing U ′

with a smaller, Zariski open neighborhood of p ∈ U ′, the divisor D′
U ′ is relatively ample. □

We now consider the much subtler question of when Xuniv(b) is projective over ÃB
g , as

opposed to étale-locally projective.

Definition 6.13. Let b, b′ ∈ H0(Tg, 1dZPL/
1
dZL). We say that b ∼ b′ lie in the same shift class

if b− b′ lifts to an M-periodic section b− b′ : MR → R of 1
dZPL.

Recall that dM ≃ Zg = H1(Tg,Z) in Construction 3.38, while M ≃ (1dZ)
g. A necessary, but

in general insufficient, condition for b ∼ b′ is that they define the same monodromy bilinear
form B via formula (24).

Example 6.14. Let g = 1 and consider b, b′, b′′ for which Bend(b) = 2[01 ], Bend(b
′) = [02 ] +

[12 ], and Bend(b′′) = [13 ] + [23 ] as Z-weighted linear combinations of 1
d -integral codimension 1

polytopes, see Definition 3.17. All three define the same monodromy bilinear form B = 2x2.
But we have b ∼ b′′ and b ̸∼ b

′. See Figure 23. The fundamental issue is that, while we could
subtract from b − b′ a linear function of slope 1

2 to make it periodic, such a function is not a
section of 1

2ZL on MR ≃ R, see Definition 3.25, because it does not have integral slope.

Proposition 6.15. Let f : Xuniv(b) → ÃB
g and f ′ : Xuniv(b′) → ÃB

g be two universal poly-
topal Mumford Constructions 3.26, for lifts of two cones b,b′ ⊂ H0(Tg, 1dZPL/

1
dZL) into

https://stacks.math.columbia.edu/tag/0D01
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Figure 23. Left: lift of section b − b′ with bending [02 ] − [12 ]. Right: lift of
section b− b′′ with bending 2[03 ]− [13 ]− [23 ].

H0(MR,
1
dZPL), mapping to the same monodromy cone B ⊂ Sym2M∨. Suppose, that for any

B ∈ B, the PL lifts b, b′ : MR → R satisfy the property that b′ − b is M-periodic. Then, the
canonical analytic polarization on the Mumford construction extends as a relatively ample global
section of the relative Picard Pic

Xuniv(b)/Ã B
g

if and only if the same holds for Xuniv(b′)/ÃB
g .

We note that the data of the gluing of the Mumford construction onto the universal family
X̃g → Ãg requires the data of lifts of b, b′ into PL functions on MR by Remark 3.39.

Proof. Let L and L′ be the defining relatively ample line bundles of the two Mumford construc-
tions over the analytic tubular neighborhood T (B) ⊂ Y (B) of the deepest toric stratum.

Take a M-periodic, regular refinement S of the normal fans for b, b′, and let Xuniv
◦ (S) →

T (B) be the corresponding fan Construction 3.11. Let LS and L′S be the pullbacks of L and
L′ to Xuniv(S), and define E := L′S ⊗ L

−1
S . Finally, let Ẽ , L̃S , L̃′S be the pullbacks of E , LS ,

L′S to the universal cover of Xuniv
◦ (S). Then Ẽ , L̃S , L̃′S are M-equivariant line bundles. The

condition that b′ − b is M-periodic implies that we have an M-equivariant isomorphism

Ẽ ≃ O(
∑
rays

R≥0vi∈S

aviDvi),

with avi ∈ Z depending only on the M-equivalence class vi of the ray R≥0vi ∈ S. Quotienting,
we deduce that the line bundle E is represented by a finite Z-linear sum

∑
aviDvi of components

over the boundary of Xuniv
◦ (S). As components over the boundary, Dvi descend to algebraic

divisors on the algebraic space Xuniv(S) → ÃB
g and thus LS and L′S differ by twisting by a

linear combination of vertical divisors, over the boundary of ÃB
g . So one extends as a section

of relative Picard if and only if the other does. Furthermore, the relative ampleness of L and
L′ over the interior Ãg are equivalent. On the other hand, the relative ampleness of either over
the boundary ÃB

g \ Ãg is automatic, by construction. □

Proposition 6.16. Let f : Xuniv(b) → ÃB
g be a universal polytopal Mumford construction

associated to a lift of b ⊂ H0(Tg, 1dZPL/
1
dZL), extending (as an algebraic space) the universal

family X̃g → Ãg of abelian varieties. Then f is a projective morphism, whenever bi(m)−bi(−m)

is M-periodic. Similarly, there is a relatively projective extension f : Xuniv⋆(b) → Ãg of the
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universal family X̃ ⋆
g → Ãg of abelian torsors when b ∼ bvor lie in the same shift class, for any

B ∈ B, and for bvor defined as in (33).

Proof. To prove the extension result for X̃g, we follow the proof strategy of Proposition 6.15: We
may pass to a smooth (−1)-symmetric common refinement Xuniv

◦ (S) → T (B) of the Mumford
constructions for bi(m) and bi(−m). The pulled back line bundles LS , L′S associated to bi(m),
bi(−m) are interchanged by the (−1)-involution: (−1)∗LS ≃ L′S . If bi(m) − bi(−m) is M-
periodic, we may conclude that L′S ≃ LS(

∑
aviDvi) differ by twisting by vertical divisors. It

follows that (LS)⊗2 defines an algebraic extension of (LX̃g
)⊗d where LX̃g

∈ PicX̃g/Ãg
(Ãg) is a

tensor square of a (−1)-symmetric local lift of the principal polarization.
The case of extending X̃ ⋆

g is similar, but again Proposition 6.15 does not directly apply,
since we are gluing onto the universal abelian torsor. The extension of X̃ ⋆

g by the Mumford
construction of second Voronoi type (Construction 6.6) is relatively projective. Replacing B with
a common refinement of B and Fvor, we may assume that B is contained in a second Voronoi
cone. Choosing lifts bvor as in (33), defines a local analytic section of X ⋆

g
vor near the boundary

stratum associated to a second Voronoi cone. The hypothesis that b ∼ bvor, for all B ∈ B and
argument of Proposition 6.15 show that, with respect to the chosen local origin section of X̃ ⋆

g ,
and a well chosen lift of b, there is a gluing Xuniv⋆(b)→ ÃB

g of Xuniv(b)→ T (B) and X̃ ⋆
g → Ãg

for which the ample line bundle on the former extends to a section in Pic
Xuniv⋆(b)/Ã B

g
(ÃB

g ).

Thus, in either case X̃g or X̃ ⋆
g , the canonical polarization on the Mumford construction

extends to a relatively ample section of relative Picard over ÃB
g .

After passing to some further tensor power, we may lift to an element E of the (algebraic)
Picard group of Xuniv(b) or Xuniv⋆(b), which is relatively very ample. Pushing forward, we get
a vector bundle f∗E over ÃB

g over the étale site, and therefore over the Zariski site. It follows
that the projectivization of (f∗E)∨ is relatively projective over ÃB

g . Thus, Xuniv(b) or Xuniv⋆(b)

admit closed, algebraic embeddings into a projective space over ÃB
g . The result follows. □

Projectivity criteria for extensions of X̃g should be compared to [17, Ch. VI]. Following
a standard toric construction, the polytope Γ of Section 3.3 defines a convex PL function
ϕ̃ : S → R on the normal fan S of Section 3.1. The function ϕ̃ should be an “admissible
homogeneous principal polarization function” as in [17, Ch. VI, Def. 1.5], with our conditions
on the shift class of bi related to Def. 1.5.(vi) of loc.cit. Our projectivity results should then
follow from [17, Ch. VI, Thm. 1.13], though translating between the language used here and
that in loc.cit. is somewhat involved.

Corollary 6.17. Suppose that H is a hyperplane arrangement for the regular matroid R, for
which the parallel hyperplanes normal to x⃗i are H

(j)
i := x⃗i(m) ∈ ϵij + Z. Then the extension

Xuniv⋆(R,H )→ ÃBR
g
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of X̃ ⋆
g → Ãg is projective whenever

∑
j ϵij = 0 ∈ Q/Z for all i = 1, . . . , k and the extension

Xuniv(R,H )→ ÃBR
g

of X̃g → Ãg is projective whenever
∑

j(ϵij +
1
2) = 0 ∈ Q/Z for all i = 1, . . . , k.

Proof. Let ri be the number of hyperplanes H
(j)
i ∈H normal to x⃗i.

For BR ∈ Fvor a matroidal cone, the Delaunay decomposition as in Construction 6.5 is the
unshifted hyperplane arrangement (27). Thus, it follows from Proposition 6.16 that H defines
a projective extension of X̃ ⋆

g → Ãg whenever the section bi ∈ H0(Tg, 1dZPL,
1
dZL) bending along

H
(j)
i := {x⃗i(m) ∈ ϵij + Z} lies in the same shift class as b

o
i ∈ H0(Tg, 1dZPL,

1
dZL) which bends

ri times along the unshifted hyperplane x⃗i(m) ∈ 0 + Z. Equivalently,∫ 1
0

∫ x
0−(−riδ0 +

∑ri
j=1 δϵij ) dy dx ∈ Z(34)

where δp denotes the Dirac delta function at p. Now (35) holds if and only if
∑ri

j=1 ϵij ∈ Z.
For the case of extending X̃g → Ãg projectively, we observe that an arrangement which bends

ri times along the half-shifted hyperplane x⃗i(m) ∈ 1
2 +Z satisfies the hypotheses of Proposition

6.16 by lifting to a 1
2ZPL function b′i which is identically zero in a neighborhood of the origin

of MR. So b′i defines a relatively projective extension of the universal family X̃g → Ãg. Then
by Proposition 6.15, it suffices to understand when b

′
i ∼ bi lie in the same shift class, i.e.∫ 1

0

∫ x
0−(−riδ 1

2
+
∑ri

j=1 δϵij ) dy dx ∈ Z.(35)

This holds exactly when
∑ri

j=1(ϵij +
1
2) ∈ Z. □

7. Proof of Theorem 1.1

Our goal is to prove Theorem 1.1, and leverage Proposition 6.12 to prove more algebraic
formulations of the results therein, see Theorem 7.1 and Corollary 7.2 below.

Proof of Theorem 1.1. Let f∗ : X∗ → (∆∗)k be a family of PPAVs which is matroidal with
respect to the snc extension (∆∗)k ↪→ ∆k (Def. 4.9). Then there are integers ri > 0 for which
the monodromy bilinear forms about {ui = 0} are riBi where Bi = x2

i is an integral generator
of the matroidal cone BR of the corresponding regular matroid R. Constructions 4.16 and 3.26,
see also Notation 4.19, give a universal Mumford degeneration

funiv : Xuniv(R,H )→ ÃBR
g

on a transversely shifted hyperplane arrangement for the associated regular matroid R, which
has exactly ri bending loci in Tg, with bending parameter 1, along hyperplanes normal to xi.

The monodromies about the boundary divisors of ÃBR
g are exactly riBi and by Proposition

2.27, the classifying morphism (∆∗)k → Ag will (lift and) extend to ∆k → ÃBR
g . Pulling

back Xuniv(R,H ) along the extension of the classifying morphism to ∆k produces the desired
extension f : X → ∆k. It has smooth total space and nodal singularities, because funiv is
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locally trivial along the deepest toroidal stratum of ÃBR
g and so smoothness, resp. nodality, of

Xuniv, resp. funiv (see Proposition 5.3), implies smoothness, resp. nodality, of the restrictions
X, resp. f , to the transversal slice ∆k to this deepest toroidal stratum.

The condition that f : X → ∆k be strictly nodal follows from the condition ri ≥ 2 by
Proposition 5.5.

Finally, we address the K-triviality of X. It suffices, by Proposition 3.14, to show that
the slice S(1,...,1) of the normal fan has integral vertices. Indeed, this holds for any shifted
matroidal degeneration, as each top-dimensional cell in S(1,...,1) is a Minkowski sum of seg-
ments

∑
i∈Iv [0,xi] ⊂ NR corresponding to hyperplanes Hi ∈ H meeting at the dual vertex

v ∈
⋂

i∈Iv H i of the arrangement in MR/M. (For a transversely shifted arrangement, these
Minkowski sums are integral-affine unit cubes). We deduce the first part of Theorem 1.1.

The second part of Theorem 1.1 follows from the existence of algebraic, transversely shifted
matroidal degenerations with specified monodromies, see Corollary 7.2 below. □

Theorem 7.1. Let f∗ : X∗ → Y ∗ be a projective family of PPAVs over a base Y ∗ = Y \D for
D ⊂ Y an snc divisor in a smooth quasiprojective variety Y . Let 0 ∈ D and assume the local
monodromy bilinear forms Bi about the components Di ∋ 0 are rix

2
i for an integral realization

i 7→ xi ∈M∨ of a regular matroid R, where M ≃ grW0 H1(Xt,Z) for t near 0. Up to passing to
an étale neighborhood of 0 ∈ Y , there is a flat, projective, D-nodal, relatively K-trivial extension
f : X → Y , which is furthermore strictly D-nodal when all ri ≥ 2.

Proof. We have a classifying map Y ∗ → Ag and by the hypothesis on monodromy, we have,
étale-locally about 0 ∈ Y , an extension and lift Y → ÃBR

g , BR := R≥0{B1, . . . , Bk}, e.g. because
this lift exists analytically-locally about 0 ∈ Y (cf. Prop. 2.27). The morphism Y → ÃBR

g is
algebraic, for instance by Borel algebraicity. Pulling back the family Xuniv(R,H ) → ÃBR

g ,
which is algebraic and étale-locally projective by Proposition 6.12, we deduce the result (the
nodality and relative K-triviality of the extension follow as in the proof above). □

Corollary 7.2. Let R be a regular matroid of rank g on a k element set and let (r1, . . . , rk) ∈ Nk.
There exists a projective morphism f : X → Y of smooth quasiprojective varieties, k = dimY ,
g + k = dimX, an snc divisor D ⊂ Y , and a zero-dimensional stratum 0 ∈ D, satisfying the
following conditions:

(1) The monodromies about the components Di ∋ 0 of D are of the form Bi = rix
2
i and

generate the matroidal cone BR (Defs. 2.6, 4.6).
(2) The morphism f : X → Y is a transversely shifted matroidal degeneration on the matroid

R near 0 ∈ Y (Def. 4.18), and the restriction of f to Y ∗ := Y \D is a family of principally
polarized abelian varieties of dimension g.

(3) The morphism f is, up to shrinking Y , a D-nodal morphism, which is furthermore
strictly D-nodal if ri ≥ 2 for all i = 1, . . . , k (Def. 5.1).
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Proof. By Proposition 4.10, there is a smooth quasiprojective variety Y , snc divisor D ⊂ Y ,
zero-stratum 0 ∈ D, and family f∗ : X∗ → Y ∗ of PPAVs over Y ∗ = Y \D, whose monodromies
about the components Di ∋ 0 are given by rix

2
i . Applying Theorem 7.1 and passing to an étale

chart about 0, we produce a projective extension f : X → Y with the desired properties. □
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